Skip to main content
Log in

Co3O4/NiO nanocomposite as a thermocatalytic and photocatalytic material for the degradation of malachite green dye

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the Co3O4/NiO nanocomposite has been synthesized as a catalyst for thermal degradation and photodegradation of the malachite green dye. Its morphology showed small spherical particles with an average particle size of 52.82 ± 17.73 nm. The XRD pattern and XPS analysis proved the formation of Co3O4/NiO nanocomposite with the growth of both Co3O4 and NiO at crystal contents proportions of 67.7 ± 17% and 32.3 ± 16%, respectively. The TGA results indicated that the Co3O4/NiO nanocomposite is nearly thermally stable up to 1000 °C. The synthesized Co3O4/NiO nanocomposite recorded an optical energy band gap of 4.27 eV and a surface area of 27.4933 m2/g. Besides, its photocatalytic activity was compared with the photolysis and thermocatalytic activity. The velocity constant (kapp) value for photocatalysis was higher than that for photolysis by ten folds. Besides, various effects like dye concentration, pH, catalyst amount, and different scavengers were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the study.

References

  1. H. Zeghioud, A.A. Assadi, N. Khellaf, H. Djelal, A. Amrane, S. Rtimi, Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: oxidants, ions effect, and reactive oxygen species investigation. Materials 12(3), 412 (2019)

    Article  CAS  Google Scholar 

  2. S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macromol. 91, 744–751 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.018

    Article  CAS  Google Scholar 

  3. H. Zeghioud, A.A. Assadi, N. Khellaf, H. Djelal, A. Amrane, S. Rtimi, Reactive species monitoring and their contribution for removal of textile effluent with photocatalysis under UV and visible lights: dynamics and mechanism. J. Photochem. Photobiol. A 365, 94–102 (2018)

    Article  CAS  Google Scholar 

  4. S. Hussain, M. Kamran, S.A. Khan, K. Shaheen, Z. Shah, H. Suo, Q. Khan, A.B. Shah, W.U. Rehman, Y.O. Al-Ghamdi, Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 168, 383–394 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.054

    Article  CAS  Google Scholar 

  5. S.A. Khan, S.B. Khan, A.M. Asiri, Layered double hydroxide of Cd-Al/C for the mineralization and de-coloration of dyes in solar and visible light exposure. Sci. Rep. 6(1), 1–15 (2016). https://doi.org/10.1038/srep35107

    Article  CAS  Google Scholar 

  6. R.R. Schio, N.P.G. Salau, E.S. Mallmann, G.L. Dotto, Modeling of fixed-bed dye adsorption using response surface methodology and artificial neural network. Chem. Eng. Commun. 208(8), 1081–1092 (2021). https://doi.org/10.1080/00986445.2020.1746655

    Article  CAS  Google Scholar 

  7. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  Google Scholar 

  8. A.C. Sadiq, N.Y. Rahim, F.B.M. Suah, Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. Int. J. Biol. Macromol. 164, 3965–3973 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.029

    Article  CAS  Google Scholar 

  9. T. Sakthivel, X. Huang, Y. Wu, S. Rtimi, Recent progress in black phosphorus nanostructures as environmental photocatalysts. Chem. Eng. J. 379, 122297 (2020). https://doi.org/10.1016/j.cej.2019.122297

    Article  CAS  Google Scholar 

  10. O. Alara, N. Abdurahman, S.A. Mudalip, O. Olalere, Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King Saud Univ. Sci. 31(4), 495–499 (2019). https://doi.org/10.1016/j.jksus.2017.05.018

    Article  Google Scholar 

  11. K.B. Tan, M. Vakili, B.A. Horri, P.E. Poh, A.Z. Abdullah, B. Salamatinia, Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep. Purif. Technol. 150, 229–242 (2015). https://doi.org/10.1016/j.seppur.2015.07.009

    Article  CAS  Google Scholar 

  12. A.A. Azzaz, S. Jellali, H. Akrout, A.A. Assadi, L. Bousselmi, Optimization of a cationic dye removal by a chemically modified agriculture byproduct using response surface methodology: biomasses characterization and adsorption properties. Environ. Sci. Pollut. Res. 24(11), 9831–9846 (2017). https://doi.org/10.1007/s11356-016-7698-6

    Article  CAS  Google Scholar 

  13. N.S. Gilani, S.E. Tilami, S.N. Azizi, One-step green synthesis of nano-sodalite zeolite and its performance for the adsorptive removal of crystal violet. J. Chin. Chem. Soc. 68, 2264 (2021). https://doi.org/10.1002/jccs.202100258

    Article  CAS  Google Scholar 

  14. S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies. J. Electroanal. Chem. 801, 267–299 (2017). https://doi.org/10.1016/j.jelechem.2017.07.047

    Article  CAS  Google Scholar 

  15. S. Garcia-Segura, L.M. Bellotindos, Y.-H. Huang, E. Brillas, M.-C. Lu, Fluidized-bed Fenton process as alternative wastewater treatment technology: a review. J. Taiwan Inst. Chem. Eng. 67, 211–225 (2016). https://doi.org/10.1016/j.jtice.2016.07.021

    Article  CAS  Google Scholar 

  16. K. Almashhori, T.T. Ali, A. Saeed, R. Alwafi, M. Aly, F.E. Al-Hazmi, Antibacterial and photocatalytic activities of controllable (anatase/rutile) mixed phase TiO2 nanophotocatalysts synthesized via a microwave-assisted sol–gel method. New J. Chem. 44(2), 562–570 (2020). https://doi.org/10.1039/C9NJ03258D

    Article  CAS  Google Scholar 

  17. S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 31, 1–35 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  18. M. Gonçalves, M.C. Guerreiro, P.H. Ramos, L.C.A. de Oliveira, K. Sapag, Activated carbon prepared from coffee pulp: potential adsorbent of organic contaminants in aqueous solution. Water Sci. Technol. 68(5), 1085–1090 (2013). https://doi.org/10.2166/wst.2013.349

    Article  CAS  Google Scholar 

  19. A.A. Azzaz, A.A. Assadi, S. Jellali, A. Bouzaza, D. Wolbert, S. Rtimi, L. Bousselmi, Discoloration of simulated textile effluent in continuous photoreactor using immobilized titanium dioxide: effect of zinc and sodium chloride. J. Photochem. Photobiol. A 358, 111–120 (2018)

    Article  CAS  Google Scholar 

  20. H. Meriem, D. Souad, T. Lakhdar, Synthesis of copper with sodium ascorbate and its application in malachite green discoloration. J. Environ. Chem. Eng. 8(5), 104457 (2020). https://doi.org/10.1016/j.jece.2020.104457

    Article  CAS  Google Scholar 

  21. N.P. Raval, P.U. Shah, N.K. Shah, Malachite green “a cationic dye” and its removal from aqueous solution by adsorption. Appl. Water Sci. 7(7), 3407–3445 (2017). https://doi.org/10.1007/s13201-016-0512-2

    Article  CAS  Google Scholar 

  22. C. Chen, C. Lu, Y. Chung, J. Jan, UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 141(3), 520–528 (2007)

    Article  CAS  Google Scholar 

  23. A. Mohamed, W. Nasser, T. Osman, M. Toprak, M. Muhammed, A. Uheida, Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J. Colloid Interface Sci. 505, 682–691 (2017). https://doi.org/10.1016/j.jcis.2017.06.066

    Article  CAS  Google Scholar 

  24. S. Saha, J. Wang, A. Pal, Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 89, 147–159 (2012). https://doi.org/10.1016/j.seppur.2012.01.012

    Article  CAS  Google Scholar 

  25. P. Raizada, P. Singh, A. Kumar, B. Pare, S.B. Jonnalagadda, Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite green. Sep. Purif. Technol. 133, 429–437 (2014). https://doi.org/10.1016/j.seppur.2014.07.012

    Article  CAS  Google Scholar 

  26. C. Byrne, S. Dervin, D. Hermosilla, N. Merayo, Á. Blanco, S. Hinder, M. Harb, D.D. Dionysiou, S.C. Pillai, Solar light assisted photocatalytic degradation of 1,4-dioxane using high temperature stable anatase W-TiO2 nanocomposites. Catal. Today 380, 199–208 (2021). https://doi.org/10.1016/j.cattod.2021.02.001

    Article  CAS  Google Scholar 

  27. P. Ganguly, S. Mathew, L. Clarizia, S. Kumar, A. Akande, S.J. Hinder, A. Breen, S.C. Pillai, Ternary metal chalcogenide heterostructure (AgInS2–TiO2) nanocomposites for visible light photocatalytic applications. ACS Omega 5(1), 406–421 (2020). https://doi.org/10.1021/acsomega.9b02907

    Article  CAS  Google Scholar 

  28. P. Suyana, P. Ganguly, B.N. Nair, S.C. Pillai, U.S. Hareesh, Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation. Chem. Eng. J. Adv. 8, 100148 (2021). https://doi.org/10.1016/j.ceja.2021.100148

    Article  CAS  Google Scholar 

  29. R. Kottappara, S. Palantavida, S.C. Pillai, B.K. Vijayan, Composition tuning in copper - oxide decorated reduced graphene oxide yields efficient photo- and reduction catalysts. Surf. Interfaces 22, 100792 (2021). https://doi.org/10.1016/j.surfin.2020.100792

    Article  CAS  Google Scholar 

  30. S. Rtimi, C. Pulgarin, R. Sanjines, J. Kiwi, Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight. RSC Adv. 3(37), 16345–16348 (2013). https://doi.org/10.1039/C3RA42762E

    Article  CAS  Google Scholar 

  31. M.A. Gabal, A.A. Al-Juaid, S. El-Rashed, M.A. Hussein, Y.M. Al-Angari, A. Saeed, Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 nano-composites with special reference to the dye removal capability. J. Inorg. Organomet. Polym. Mater. 29(6), 2197–2213 (2019). https://doi.org/10.1007/s10904-019-01179-z

    Article  CAS  Google Scholar 

  32. S.A. Khan, S.B. Khan, A.M. Asiri, Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New J. Chem. 39(7), 5561–5569 (2015). https://doi.org/10.1039/C5NJ00521C

    Article  CAS  Google Scholar 

  33. S.A. Khan, S.B. Khan, A.M. Asiri, Toward the design of Zn–Al and Zn–Cr LDH wrapped in activated carbon for the solar assisted de-coloration of organic dyes. RSC Adv. 6(86), 83196–83208 (2016). https://doi.org/10.1039/C6RA10598J

    Article  CAS  Google Scholar 

  34. S.B. Khan, S.A. Khan, A.M. Asiri, A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction. Appl. Surf. Sci. 370, 445–451 (2016). https://doi.org/10.1016/j.apsusc.2016.02.062

    Article  CAS  Google Scholar 

  35. M. Cheng, H. Fan, Y. Song, Y. Cui, R. Wang, Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalton Trans. 46(28), 9201–9209 (2017). https://doi.org/10.1039/C7DT01289F

    Article  CAS  Google Scholar 

  36. S.R. Alharbi, M. Alhassan, O. Jalled, S. Wageh, A. Saeed, Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J. Mater. Sci. 53(16), 11584–11594 (2018). https://doi.org/10.1007/s10853-018-2458-2

    Article  CAS  Google Scholar 

  37. S.S.J. Aravind, V. Eswaraiah, S. Ramaprabhu, Facile and simultaneous production of metal/metal oxide dispersed graphene nano composites by solar exfoliation. J. Mater. Chem. 21(43), 17094–17097 (2011). https://doi.org/10.1039/C1JM13626G

    Article  CAS  Google Scholar 

  38. Z.N. Kayani, M.Z. Butt, S. Riaz, S. Naseem, Synthesis of NiO nanoparticles by sol-gel technique. Mater. Sci. 36(4), 547–552 (2019). https://doi.org/10.2478/msp-2018-0088

    Article  CAS  Google Scholar 

  39. R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G. Gnana Kumar, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5(93), 76538–76547 (2015). https://doi.org/10.1039/C5RA11739A

    Article  CAS  Google Scholar 

  40. M.N. Siddique, A. Ahmed, T. Ali, P. Tripathi, Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy. AIP Conf. Proc. 1953(1), 030027 (2018). https://doi.org/10.1063/1.5032362

    Article  CAS  Google Scholar 

  41. R. Malik, V.K. Tomer, Y.K. Mishra, L. Lin, Functional gas sensing nanomaterials: a panoramic view. Appl. Phys. Rev. 7(2), 021301 (2020). https://doi.org/10.1063/1.5123479

    Article  CAS  Google Scholar 

  42. X. Song, L. Gao, S. Mathur, Synthesis, characterization, and gas sensing properties of porous nickel oxide nanotubes. J. Phys. Chem. C 115(44), 21730–21735 (2011). https://doi.org/10.1021/jp208093s

    Article  CAS  Google Scholar 

  43. X. Sun, X. Hu, Y. Wang, R. Xiong, X. Li, J. Liu, H. Ji, X. Li, S. Cai, C. Zheng, Enhanced gas-sensing performance of fe-doped ordered mesoporous NiO with long-range periodicity. J. Phys. Chem. C 119(6), 3228–3237 (2015). https://doi.org/10.1021/jp5124585

    Article  CAS  Google Scholar 

  44. E.U. Ikhuoria, S.O. Omorogbe, B.T. Sone, M. Maaza, Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: a facile green synthesis using Manihot esculenta Crantz extract. Sci. Tecnol. Mater. 30(2), 92–98 (2018). https://doi.org/10.1016/j.stmat.2018.02.003

    Article  Google Scholar 

  45. C.T. Anuradha, P. Raji, Facile synthesis and characterization of Co3O4 nanoparticles for high-performance supercapacitors using Camellia sinensis. Appl. Phys. A 126(3), 164 (2020). https://doi.org/10.1007/s00339-020-3352-8

    Article  CAS  Google Scholar 

  46. A. Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K.J. Hemalatha, Structural and optical properties of Co3O4 nanoparticles prepared by sol-gel technique for photocatalytic application. Int. J. Electrochem. Sci. 14(4), 3535–3552 (2019). https://doi.org/10.20964/2019.04.40

    Article  CAS  Google Scholar 

  47. M. Pooresmaeil, H. Namazi, Chapter 14 - Application of polysaccharide-based hydrogels for water treatments, in Hydrogels Based on Natural Polymers. ed. by Y. Chen (Elsevier, Amsterdam, 2020), pp.411–455

    Chapter  Google Scholar 

  48. Y. Zhu, J. Xue, T. Xu, G. He, H. Chen, Enhanced photocatalytic activity of magnetic core–shell Fe3O4@ Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J. Mater. Sci.-Mater. Electron. 28(12), 8519–8528 (2017). https://doi.org/10.1007/s10854-017-6574-6

    Article  CAS  Google Scholar 

  49. L. Ye, J. Liu, C. Gong, L. Tian, T. Peng, L. Zan, Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2(8), 1677–1683 (2012). https://doi.org/10.1021/cs300213m

    Article  CAS  Google Scholar 

  50. Y. Ao, L. Xu, P. Wang, C. Wang, J. Hou, J. Qian, Y. Li, Graphene and TiO2 co-modified flower-like Bi2O2CO3: a novel multi-heterojunction photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 355, 411–418 (2015). https://doi.org/10.1016/j.apsusc.2015.07.027

    Article  CAS  Google Scholar 

  51. H. Liu, W.-R. Cao, Y. Su, Z. Chen, Y. Wang, Bismuth oxyiodide–graphene nanocomposites with high visible light photocatalytic activity. J. Colloid Interface Sci. 398, 161–167 (2013). https://doi.org/10.1016/j.jcis.2013.02.007

    Article  CAS  Google Scholar 

  52. R. Montenegro-Ayo, J.C. Morales-Gomero, H. Alarcon, S. Cotillas, P. Westerhoff, S. Garcia-Segura, Scaling up photoelectrocatalytic reactors: a TiO2 nanotube-coated disc compound reactor effectively degrades acetaminophen. Water 11(12), 2522 (2019). https://doi.org/10.3390/w11122522

    Article  CAS  Google Scholar 

  53. X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang, C. Chen, Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway. Chem. Eng. J. 274, 290–297 (2015). https://doi.org/10.1016/j.cej.2015.03.077

    Article  CAS  Google Scholar 

  54. P. Huo, Y. Tang, M. Zhou, J. Li, Z. Ye, C. Ma, L. Yu, Y. Yan, Fabrication of ZnWO4-CdS heterostructure photocatalysts for visible light induced degradation of ciprofloxacin antibiotics. J. Ind. Eng. Chem. 37, 340–346 (2016). https://doi.org/10.1016/j.jiec.2016.03.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project under grant no. (KEP-MSc: 55-247-1443)

Author information

Authors and Affiliations

Authors

Contributions

WUR contributed toward conceptional, methodology; formal analysis; investigation; data Curation; writing—original draft. TNK contributed toward methodology; investigation; data Curation; writing—original draft. AS contributed toward validation, data Curation; writing—review & editing. KS contributed toward investigation, writing—original draft. ZS contributed toward investigation, writing—original draft. SH contributed toward validation, writing—original draft. EMB contributed toward investigation, writing—original draft. HMA contributed toward investigation—writing—original draft. TMF contributed toward validation, writing—original draft. KA contributed toward investigation, writing—original draft. SBK contributed toward investigation, funding, writing—original draft. SAK contributed toward conceptional, supervision; formal analysis; investigation; data Curation; resources; writing—review & editing.

Corresponding authors

Correspondence to Abdu Saeed or Shahid Ali Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to publish

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 199 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, W.U., Khattak, M.N., Saeed, A. et al. Co3O4/NiO nanocomposite as a thermocatalytic and photocatalytic material for the degradation of malachite green dye. J Mater Sci: Mater Electron 34, 15 (2023). https://doi.org/10.1007/s10854-022-09428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09428-7

Navigation