Skip to main content
Log in

Branched Gold Nanostructures Through a Facile Fructose Mediated Microwave Route

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work reports on the synthesis of different morphologies of gold nanoparticles using a microwave assisted route that is rapid, in situ and seedless. Unlike many currently employed fabricating methods, this method takes place in a single step in microwave. Gold nanospheres with an average particle size of 26 nm were synthesized with only using fructose as a novel reducing agent without any other addition of stabilizers. Branched Gold nanostars were fabricated using fructose, trisodium citrate and NaOH. Varying the concentrations of the Au and NaOH also resulted in the formation of stable gold nanospheres with particle sizes of 4.8 nm and 13 nm respectively. Using fructose along with triethanol amine led to the formation of homogeneously distributed gold nanoflowers. The mechanism for the formation of various morphologies is also presented. Such morphologies are of potential interest in applications such as sensing and catalysis due to the well understood size dependent behaviour of Gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Faraday (1857). Philos. Trans. R. Soc. Lond 147, 145.

    Google Scholar 

  2. H. M. Chen, R. S. Liu, M. Y. Lo, S. C. Chang, L. D. Tsai, Y. M. Peng, and J. F. Lee (2008). J. Phys. Chem. C 112, 7522.

    Article  CAS  Google Scholar 

  3. D. A. Schultz (2003). Curr. Opin. Biotechnol. 14, 13.

    Article  CAS  PubMed  Google Scholar 

  4. A. K. Salem, P. C. Searson, and K. W. Leong (2003). Nat. Mater. 2, 668.

    Article  CAS  PubMed  Google Scholar 

  5. S. Ranjan and D. Nandita (2014). J. Nanopart. Res. 16, 2464.

    Article  Google Scholar 

  6. M. A. El-Sayed (2001). Acc. Chem. Res. 34, 257.

    Article  CAS  PubMed  Google Scholar 

  7. S. Chen and Y. J. Yang (2002). J. Am. Chem. Soc. 124, 5280.

    Article  CAS  PubMed  Google Scholar 

  8. Y. W. Charles, R. Jin, and C. A. Mirkin (2002). Nano. Lett. 297, 1536.

    Google Scholar 

  9. P. Rajasekhar, P. UshaRani, and B. Sreedhar (2010). J. Nanopart. Res. 12, 1711.

    Article  Google Scholar 

  10. E. Katz and J. Willner (2004). Angew Chem. Int. Ed 43, 6042.

    Article  CAS  Google Scholar 

  11. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson (2001). Science 291, 103.

    Article  CAS  PubMed  Google Scholar 

  12. H. M. Chen, R. S. Liu, H. Li, and H. C. Zeng (2006). Angew. Chem. Int. Ed. 45, 2713.

    Article  CAS  Google Scholar 

  13. M. Das and K. H. Khim (2011). Toxicol. Environ. Health. Sci. 3, 193.

    Article  Google Scholar 

  14. H. Barabadi, M. T. Rahimi, A. Barac, A. E. Maraolo, L. J. Robertson, and E. Ahmadpour (2019). Nanomed:Nanotech Biol. Med. 18, 221.

    Article  CAS  Google Scholar 

  15. M. Saravanan, H. Barabadi, B. Ramachandran, G. Venkatraman, and K. Ponmurugan (2019). Anal. Chem. 87, 291.

    Google Scholar 

  16. H. Barabadi (2017). Cell. Mol. Biol 63, 3.

    Article  PubMed  Google Scholar 

  17. H. Barabadi, K. D. Kamali, F. J. Shoushtari, B. Tajani, M. A. Mahjoub, A. Alizadeh, and M. Saravanan (2019). J. Clust. Sci. 18, 1.

    Google Scholar 

  18. A. Khatua, E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, A. Naik, and R. Meena (2020). J. Clust. Sci. 31, 125.

    Article  CAS  Google Scholar 

  19. I. H. Barabadi, B. Tajani, M. Moradi, K. D. Kamali, R. Meena, S. Honary, and M. Saravanan (2019). J. Clust. Sci. 15, 1.

    Google Scholar 

  20. M. Saravanan, H. Vahidi, D. M. Cruz, A. Vernet, E. Mostafavi, R. Stelmach, and H. Barabadi (2020). Int. J. Nanomed 15, 3577.

    Article  CAS  Google Scholar 

  21. H. Vahidi, H. Barabadi, and M. Saravanan (2020). J. Clust. Sci. 31, 301.

    Article  CAS  Google Scholar 

  22. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. G. Ghomi, and M. Saravanan (2020). J. Clust. Sci. 31, 311.

    Article  CAS  Google Scholar 

  23. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, and M. Saravanan (2020). J. Clust. Sci. 31, 651.

    Article  CAS  Google Scholar 

  24. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, and M. Saravanan (2020). J. Clust. Sci. 31, 2.

    Article  Google Scholar 

  25. R. Balachandar, P. Gurumoorthy, N. Karmegam, H. Barabadi, R. Subbaiya, K. Anand, and M. Saravanan (2019). J. Clust. Sci. 30, 1481.

    Article  CAS  Google Scholar 

  26. K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, and M. Saravanan (2019). J. Clust. Sci. 30, 1415.

    Article  CAS  Google Scholar 

  27. P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, and M. Saravanan (2019). J. Clust. Sci. 30, 715.

    Article  CAS  Google Scholar 

  28. A. Khatua, A. Prasad, E. Priyadarshini, A. K. P. Naik, M. Saravanan, and R. Meena (2020). J. Clust. Sci. 7, 1.

    Google Scholar 

  29. V. Varadharaj, A. Ramaswamy, R. Sakthivel, R. Subbaiya, H. Barabadi, M. Chandrasekaran, and M. Saravanan (2019). J. Clust. Sci. 31, 1.

    Google Scholar 

  30. H. Barabadi, H. Vahidi, M. A. Mahjoub, Z. Kosar, K. D. Kamali, K. Ponmurugan, and M. Saravanan (2019). J. Clust. Sci. 31, 1.

    Article  Google Scholar 

  31. I. Virmani, C. Sasi, E. Priyadarshini, R. Kumar, S. K. Sharma, G. P. Singh, and R. Meena (2019). J. Clust. Sci. 10, 1.

    Google Scholar 

  32. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, and M. Saravanan (2020). J. Clust. Sci. 31, 659.

    Article  CAS  Google Scholar 

  33. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, and M. Saravanan (2020). J. Clut. Sci. 31, 651.

    CAS  Google Scholar 

  34. H. Barabadi, M. Najafi, J. Samadian, A. Azarnezhad, H. Vahidi, M. A. Mahjoub, and A. Ahmadi (2019). Medcin. 55, 439.

    Google Scholar 

  35. K. Mortezaee, M. Najafi, H. Samadian, H. Barabadi, A. Azarnezhad, and A. Ahmadi (2019). Chem. Bio. Inter. 312, 108814.

    Article  CAS  Google Scholar 

  36. K. Parveen, V. Banse, & L. Ledwani, 1724, 1, 020048, AIP Publishing LLC (2016).

  37. M. Wang, X. Lai, L. Shao, and L. Li (2018). Int. J. Nanomed. 13, 4445.

    Article  CAS  Google Scholar 

  38. K. Parveen, V. Banse, and L. Lalita, AIP Conf. Proc. 1724, 020048-1-020048-7 (2016).

  39. Y. Dirix, C. Bastiaansen, and W. Caseri (1999). Adv. Mater. 11, 223.

    Article  CAS  Google Scholar 

  40. J. I. Kroschwitz, M. Howe-Grant, Eds. Wiley, New York 12, 569 (1994).

  41. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, and J. P. Coadonnet (1999). Phys. Rev. Lett. 82, 2590.

    Article  CAS  Google Scholar 

  42. J. B. Pendry (1999). Science 285, 1687.

    Article  CAS  Google Scholar 

  43. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  44. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen (1997). Nature 389, 699.

    Article  CAS  Google Scholar 

  45. A. Rampi, O. J. A. Schueller, and G. M. Whitesides (1998). Appl. Phys. Lett. 72, 1781.

    Article  CAS  Google Scholar 

  46. G. Dharmalingam and M. A. Carpenter (2017). Sens Actuat B 251, 1104.

    Article  CAS  Google Scholar 

  47. G. Dharmalingam, N. A. Joy, B. Grisafe, and M. A. Carpenter (2012). J. Nanotechnol 3, 712.

    Google Scholar 

  48. F. Boccuzi, et al. (1995). Sens. Actuat. B 25, 540.

    Article  Google Scholar 

  49. E. Della Gasperaa, M. Guglielmi, G. Perotto, S. Agnoli, G. Granozzi, M. L. Post, and A. Martucci (2012). Sens. Actuat. B 161, 675.

    Article  Google Scholar 

  50. P. R. Ohodnicki, C. Wang, S. Natesakhawat, J. P. Baltrus, and T. D. Brown (2012). J. App. Phys. 111, 064320.

    Article  Google Scholar 

  51. J. P. Baltrus, P. R. Ohodnicki, N. Joy, and M. A. Carpenter (2014). App. Surf. Sci. 313, 19.

    Article  CAS  Google Scholar 

  52. S. S. Wong, E. Joselevich, A. T. Wooley, C. L. Cheung, and C. M. Lieber (1998). Nature 394, 52.

    Article  CAS  PubMed  Google Scholar 

  53. Z. Y. Tang, N. A. Kotov, and M. Giersig (2002). Science 297, 237.

    Article  CAS  PubMed  Google Scholar 

  54. R. B. Grubbs (2007). Nat. Mater 6, 553.

    Article  CAS  PubMed  Google Scholar 

  55. C. Murphy and J. Jana (2002). Adv. Mater. 14, 80.

    Article  CAS  Google Scholar 

  56. Y. Sun, B. Mayers, and Y. Xia (2003). Adv. Mater. 15, 641.

    Article  CAS  Google Scholar 

  57. G. A. Martınez (2008). Nanopart. Res. 10, 1343.

    Article  Google Scholar 

  58. S. Kundu, S. Panigrahi, S. Praharaj, S. Basu, S. K. Ghosh, and A. Pal (2007). Nanotechnology 18, 75712.

    Article  Google Scholar 

  59. V. G. Pol, D. N. Srivastava, V. Palchik, M. A. Slifkin, and A. M. Weiss (2002). Lang. 18, 3352.

    Article  CAS  Google Scholar 

  60. J. J. Gunter and P. Biswas (2009). J. Nanopart. Res. 11, 77.

    Article  Google Scholar 

  61. A. Bhosale and B. M. Bhanage (2014). RSC Adv. 4, 15122.

    Article  CAS  Google Scholar 

  62. S. Kundu, L. Peng, and H. Liang (2008). Inorg. Chem. 47, 6344.

    Article  CAS  PubMed  Google Scholar 

  63. A. R. Gedanken (2004). Langmuir 20, 3431.

    Article  PubMed  Google Scholar 

  64. I. Pastoriza-Santos and L. M. Liz-Marzán (2002). Langmuir 18, 2888.

    Article  CAS  Google Scholar 

  65. W. Chen, J. Zhao, J. Lee, and Y. Liu (2005). Mater. Chem. Phys. 91, 124.

    Article  CAS  Google Scholar 

  66. F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, and B. T. Dai (2003). Jpn. J. Appl. Phys. 42, 4152.

    Article  CAS  Google Scholar 

  67. S. K. Seol, D. Kim, S. Jung, and Y. Hwu (2012). Mater. Chem. Phys. 131, 135.

    Article  Google Scholar 

  68. A. B. Panda, G. P. Glaspell, and M. S. El-Shall (2006). J. Am. Chem. Soc. 128, 2790.

    Article  CAS  PubMed  Google Scholar 

  69. R. Jin, Y. Cao, C. Mirkin, A. Kelly, K. L. Schatz, and G. C. Zheng (2001). J. G. Sci. 294, 1901.

    CAS  Google Scholar 

  70. M. C. Daniel and D. Astruc (2004). Chem. Rev. 104, 293.

    Article  CAS  PubMed  Google Scholar 

  71. J. P. Juste, I. P. Santos, L. M. Liz-Marzan, and P. Mulvaney (2005). Coord. Chem. Rev. 249, 1870.

    Article  Google Scholar 

  72. S. S. Sankar, A. Rai, B. Ankamwar, A. Singh, and A. Ahmed (2004). Nat. Mater. 3, 482.

    Article  Google Scholar 

  73. T. H. Ha, H. J. Koo, and B. H. Chung (2007). J. Phys. Chem. C. 111, 1123.

    Article  CAS  Google Scholar 

  74. G. Schmid (1992). Chem. Rev. 92, 1709.

    Article  CAS  Google Scholar 

  75. A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W. T. Han (2007). Opt. Express. 15, 6374.

    Article  CAS  PubMed  Google Scholar 

  76. G. Mie (1908). Ann. Phys. 25, 377.

    Article  CAS  Google Scholar 

  77. R. Pamies, J. Gines, and H. Cifre (2014). J. Nanopart. Res. 16, 2376.

    Article  Google Scholar 

  78. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed (1999). J. Chem. Phys. 111, 1255.

    Article  CAS  Google Scholar 

  79. Y. Yang, Z. Du, J. Ma, F. Lu, J. Zhang, and J. Xu (2014). Chem. Sus. Chem. 7, 1352.

    Article  CAS  Google Scholar 

  80. J. Cui, J. Tan, T. Deng, X. Cui, Y. Zhu, and Y. Li (2016). Green. Chem. 18, 1619.

    Article  CAS  Google Scholar 

  81. R. Elghanian, J. Storhoff, C. Mucic, R. Lestinger, and C. Mirkin (1997). Science 277, 1078.

    Article  CAS  PubMed  Google Scholar 

  82. J. Storhoff, A. Lazarides, C. Mucic, C. Mirkin, R. Lestinger, and G. Schatz (2000). J. Am. Chem. Soc. 122, 4640.

    Article  CAS  Google Scholar 

  83. C. Mucic, J. Storhoff, C. Mirkin, and R. Letsinger (1998). J. Am. Chem. Soc. 120, 12674.

    Article  CAS  Google Scholar 

  84. C. H. Kuo, T. F. Chiang, L. J. Chen, and M. H. Huang (2004). Langmuir 20, 7820.

    Article  CAS  PubMed  Google Scholar 

  85. J. Kasthuri, K. Kathiravan, and N. Rajendiran (2009). J. Nanopart. Res. 11, 1075.

    Article  CAS  Google Scholar 

  86. D. Shechtman, I. Blech, and D. Gratias (1984). Phys. Rev. Lett. 53, 1951.

    Article  CAS  Google Scholar 

  87. L. Bendersky (1985). Phys. Rev. Lett. 55, 1461.

    Article  CAS  PubMed  Google Scholar 

  88. J. M. M. Carrizales, J. L. Rodrıguez-Lopez, C. G. Wing, M. Miki, and M. Jose (2004). Encyclopedia Nanosci. Nanotech. 232, 237.

    Google Scholar 

  89. W. Moukarzel, J. Fitremann, and J. D. Marty (2011). Nanoscale 3, 3285.

    Article  CAS  PubMed  Google Scholar 

  90. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh (2012). Nanotechnology 23, 075102.

    Article  PubMed  PubMed Central  Google Scholar 

  91. W. Ahmed, E. S. Kooij, A. V. Silfhout, and B. Poelsema (2010). Nanotechnology 21, 125605.

    Article  PubMed  Google Scholar 

  92. G. Kawamura, Y. Yang, and K. Fukuda (2009). Mater. Chem. Phys. 115, 229.

    Article  CAS  Google Scholar 

  93. M. M. Phiri and D. W. Mulder (2019). R. Soc. Open Sci. 6, 181971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. C. He, L. Liu, Z. Fang, J. Li, J. Guo, and J. Wei (2014). Ultrason. Sonochem. 21, 542.

    Article  CAS  PubMed  Google Scholar 

  95. C. Pfeiffer, C. RehbockHühn, D. C. Carrion, C. De Aberasturi, D. J. Merk, V. Barcikowski, and W. J. Parak (2014). J. Soc. Interface. 11, 1098.

    Google Scholar 

  96. S. Trigari, A. Rindi, G. Margheri, S. Sottini, G. Dellepiane, and E. Giorgetti (2011). J. Mater. Chem. 21, 6531.

    Article  CAS  Google Scholar 

  97. T. K. Sau and C. J. Murphy (2004). J. Am. Chem. Soc. 126, 8648.

    Article  CAS  PubMed  Google Scholar 

  98. E. Hao, R. C. Bailey, G. Schatz, J. T. Hupp, and S. Li (2004). Nano Lett. 4, 327.

    Article  CAS  Google Scholar 

  99. G. Maiorano, L. Rizzello, M. A. Malvindi, S. S. Shanker, L. Martiradonna, A. Falqui, R. Cingolani, and P. P. Pompa (2011). Nanoscale 3, 2227.

    Article  CAS  PubMed  Google Scholar 

  100. J. Xie, Q. Zhang, J. Y. Lee, and C. Wang (2008). ACS Nano. 2, 2473.

    Article  CAS  PubMed  Google Scholar 

  101. Q. Su, X. Ma, J. Dong, C. Jiang, W. Qian, and A. C. S. Appl (2011). Mater. Interfaces 3, 1873.

    Article  CAS  Google Scholar 

  102. B. Lim and Y. Xia (2011). Angew. Chem. Int. Ed. 50, 76.

    Article  CAS  Google Scholar 

  103. G. Martínez, A. Barbosa, S. P. Santos, and I. LizMarzan (2011). Curr. Opin. Colloid Interface Sci. 16, 118.

    Article  Google Scholar 

  104. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander (2007). Nano Lett. 7, 729.

    Article  CAS  PubMed  Google Scholar 

  105. C. Hrelescu, T. K. Sau, A. L. Rogach, F. Jackel, G. Laurent, L. Douillard, and F. Charra (2011). Nano Lett. 11, 402.

    Article  CAS  PubMed  Google Scholar 

  106. S. K. Dondapati, T. K. Sau, C. Hrelescu, T. A. Klar, FD Stefani, J Feldmann. (2010). J. ACS Nano 4, 6318.

    Article  CAS  Google Scholar 

  107. L. R. Lorenzo, R. A. A. Puebla, A. G. Abajo, and F. J. Liz-Marzan (2010). J. Phys. Chem. C 114, 7336.

    Article  Google Scholar 

  108. E. N. Esenturk and A. R. H. Walker (2009). J. Raman Spectrosc. 40, 86.

    Article  CAS  Google Scholar 

  109. C. Hrelescu, T. K. Sau, A. L. Rogach, and F. Jackel (2011). Nano Lett. 11, 402.

    Article  CAS  PubMed  Google Scholar 

  110. R. Sajanlal and T. Pradeep (2009). Nano Res. 2, 306.

    Article  CAS  Google Scholar 

  111. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science 294, 1901.

    Article  CAS  PubMed  Google Scholar 

  112. G. Dharmalingam, N. A. Joy, B. Grisafe, and M. A. Carpenter (2012). J. Nanotechnol. 3, 712.

    Google Scholar 

  113. T. K. Sau and A. L. Rogach (2010). Adv. Mater. 22, 1805.

    Article  CAS  PubMed  Google Scholar 

  114. T. K. Sau and C. J. Murphy (2007). Philos. Mag. 87, 2143.

    Article  CAS  Google Scholar 

  115. L. Lu, H. Ai, and K. Ozaki (2008). Langmuir 24, 1058.

    Article  CAS  PubMed  Google Scholar 

  116. H. Yuan, W. H. Ma, C. C. Chen, J. C. Zhao, J. W. Liu, H. Y. Zhu, and X. P. Gao (2007). Chem. Mater. 19, 1592.

    Article  CAS  Google Scholar 

  117. M. H. Rashid, R. R. Bhattacharjee, A. Kotal, and T. K. Mandal (2006). J. Phys. Chem. C. 111, 16750.

    Article  Google Scholar 

  118. X. Teng and W. Yang (2005). Nano Lett. 5, 885.

    Article  CAS  PubMed  Google Scholar 

  119. S. Barbosa, A. Agrawal, L. R. Lorenzo, I. P. Santos, R. A. Alvarez-Puebla, A. Kornowski, H. Weller, and L. M. Liz-Marzan (2010). Langmuir 26, 14943.

    Article  CAS  PubMed  Google Scholar 

  120. C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chem. Rev. 105, 1025.

    Article  CAS  PubMed  Google Scholar 

  121. C. J. Murphy, et al. (2005). J. Phys. Chem. B 109, 13857.

    Article  CAS  PubMed  Google Scholar 

  122. P. S. Kumar, I. P. Santos, B. R. Gonzalez, F. J. G. Abajo, and L. M. Liz-Marzan (2008). Nanotechnology 19, 015606.

    Article  Google Scholar 

  123. A. R. Tao, S. Habas, and P. Yang (2008). Nanotechnology 4, 310.

    CAS  Google Scholar 

  124. B. M. Stlhandske, V. Mink, J. Sandstrism, M. P. Fipai, and I. Johansson (1997). Vib. Spectrosco. 14, 207.

    Article  Google Scholar 

  125. J. Grzelczak, P. Juste, P. Mulvaney, and L. M. Liz-Marzán (2008). Chem. Soc. Rev. 37, 1783.

    Article  CAS  PubMed  Google Scholar 

  126. J. Fang, et al. (2010). Nano Lett. 10, 5006.

    Article  CAS  PubMed  Google Scholar 

  127. Z. Wang, J. Zhang, J. M. Ekman, P. J. Kenis, and Y. Lu (2010). Nano Lett. 10, 1886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Aeronautics Reasearch & Development Board, Govt of India, Sanction code: DGTM/TM/ARDB/GIA/18-19/0296, (Project No: 2031895). Authors thank Dr. R. Sivasubramanian for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmalingam Gnanaprakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, K., Gnanaprakash, D. Branched Gold Nanostructures Through a Facile Fructose Mediated Microwave Route. J Clust Sci 33, 227–240 (2022). https://doi.org/10.1007/s10876-020-01969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01969-3

Keywords

Navigation