Skip to main content
Log in

[2 + 2] Cycloaddition and Bond Cleavage of Boron Nitride Cages with Iminoborane: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have studied the addition of reaction between iminoborane HBNH with the BnNn cages (n = 12, 16, 28 and 36) for the chemoselectivity (BN bond cleavage and expansion ring vs [2 + 2] cycloaddition) and regioselectivity (square–hexagon junctions vs hexagon–hexagon) of the reaction. Based on our results, the iminoborane molecule can either selectively break a B–N bond of the BN cages, expanding the square ring of the BN cage to a larger one at the surface, or undergo a [2 + 2]-cycloaddition on the BNNT surface. These reactions exhibit a depending on the reactive site of the cages. The square–hexagon B–N bond of the cages prefer bond-cleavage-ring-expansion processes, while hexagon–hexagon B–N bonds follow [2 + 2] cycloaddition reaction. Overall, all reactions are is exothermic while bond-cleavage-ring-expansion processes are a bit more favorable than [2 + 2] cycloadditions with smaller barrier heights. While complexes of iminoborane with hexagon–hexagon bonds at the middle of the larger cages resemble [2 + 2]-cycloaddition, BN bond cleavage also occurred and HBNH acts as a bridge at the top of the decagon. The larger values of HOMO–LUMO gaps for the most stable configurations also indicate kinetically preference the BN bond cleavage and ring expansion processes than the [2 + 2]-cycloaddition reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Zhang, P. Maksyutenko, R. I. Kaiser, A. M. Mebel, A. Gregušová, S. A. Perera, and R. J. Bartlett (2010). J. Phys. Chem. A 114, 12148.

    Article  CAS  Google Scholar 

  2. Y. Kawashima, K. Kawaguchi, and E. Hirota (1987). J. Chem. Phys. 87, 6331.

    Article  CAS  Google Scholar 

  3. E. R. Lory and R. F. Porter (1973). J. Am. Chem. Soc. 95, 1766.

    Article  CAS  Google Scholar 

  4. A. Meller Topics in Current Chemistry (Springer, Berlin, 1972).

    Google Scholar 

  5. P. Paetzold, H. J. Emeléus, and A. G. Sharpe, Advances in Inorganic Chemistry, vol. 31, Chap. Iminoboranes (Academic Press, Orlando, FL, 1987), pp. 123-170.

  6. J. D. Dill, P. V. R. Schleyer, and J. A. Pople (1975). J. Am. Chem. Soc. 97, 3402.

    Article  CAS  Google Scholar 

  7. P. Botschwina (1978). Chem. Phys. 28, 231.

    Article  CAS  Google Scholar 

  8. D. V. Lanzisera and L. Andrews (1997). J. Phys. Chem. A 101, 824.

    Article  CAS  Google Scholar 

  9. V. M. Rosas-Garcia (2011). Comput. Theor. Chem. 967, 160.

    Article  CAS  Google Scholar 

  10. N. C. Baird and R. K. Datta (1972). Inorg. Chem. 11, 17.

    Article  CAS  Google Scholar 

  11. T. M. Gilbert (2003). Organometallics 22, 2298.

    Article  CAS  Google Scholar 

  12. T. M. Gilbert and S. M. Bachrach (2007). Organometallics 26, 2672.

    Article  CAS  Google Scholar 

  13. T. M. Gilbert (1998). Organometallics 17, 5513.

    Article  CAS  Google Scholar 

  14. T. M. Gilbert (2000). Organometallics 19, 1160.

    Article  CAS  Google Scholar 

  15. T. M. Gilbert and B. D. Gailbreath (2001). Organometallics 20, 4727.

    Article  CAS  Google Scholar 

  16. P. Paetzold (1991). Pure Appl. Chem. 63, 345.

    Article  CAS  Google Scholar 

  17. D. R. Armstrong and D. T. Clark (1972). Theor. Chem. Acc. 24, 307.

    Article  CAS  Google Scholar 

  18. E. V. Steuber, G. Elter, M. Noltemeyer, H.-G. Schmidt, and A. Meller (2000). Organometallics 19, 5083.

    Article  Google Scholar 

  19. R. Sundaram, S. Scheiner, A. K. Roy, and T. Kar (2015). J. Phys. Chem. C 119, 3253.

    Article  CAS  Google Scholar 

  20. F. Jensen and H. Toflund (1993). Chem. Phys. Lett. 201, 89.

    Article  CAS  Google Scholar 

  21. H. Y. Zhu, T. G. Schmaltz, and D. J. Klein (1997). Int. J. Quantum Chem. 63, 393.

    Article  CAS  Google Scholar 

  22. G. Seifert, R. W. Fowler, D. Mitchell, D. Porezag, and T. Frauenheim (1997). Chem. Phys. Lett. 268, 352.

    Article  CAS  Google Scholar 

  23. R. T. Paine and C. K. Narula (1990). Chem. Rev. 90, 73.

    Article  CAS  Google Scholar 

  24. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihare, and K. Suganuma (2000). Mater. Sci. Eng. B 74, 206.

    Article  Google Scholar 

  25. T. Oku, M. Kuno, H. Kitahara, and I. Nartia (2001). Int. J. Inorg. Mater. 3, 597.

    Article  CAS  Google Scholar 

  26. S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham (1999). Appl. Phys. Lett. 75, 61.

    Article  CAS  Google Scholar 

  27. V. V. Pokropivny, V. V. Skorokhod, G. S. Oleinik, A. V. Kurdyumov, T. S. Bartnits-kaya, A. V. Pokropivny, A. G. Sisonyuk, and D. M. Sheichenko (2000). J. Solid State Chem. 154, 214.

    Article  CAS  Google Scholar 

  28. D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441.

    Article  CAS  Google Scholar 

  29. J. M. L. Martin, J. El-Yazal, J. P. Francois, and R. Gijbels (1995). Chem. Phys. Lett. 232, 289.

    Article  CAS  Google Scholar 

  30. J. M. L. Martin, J. El-Yazal, and J. P. Francois (1996). Chem. Phys. Lett. 248, 95.

    Article  CAS  Google Scholar 

  31. D. L. Strout (2000). J. Phys. Chem. A 104, 3364.

    Article  CAS  Google Scholar 

  32. D. L. Strout (2001). J. Phys. Chem. A 105, 261.

    Article  CAS  Google Scholar 

  33. S. Osuna and K. N. Houk (2009). Chem. Eur. J. 15, 13219.

    Article  CAS  Google Scholar 

  34. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Account. 120, 215.

    Article  CAS  Google Scholar 

  35. M. Anafcheh and R. Ghafouri (2014). Comput. Theor. Chem. 1034, 32.

    Article  CAS  Google Scholar 

  36. M. Anafcheh (2018). Mol. Phys. 116, 179.

    Article  CAS  Google Scholar 

  37. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

  38. M. S. Gordon and M. W. Schmidt, in C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (eds.), Theory and Applications of Computational Chemistry: The First Forty Years (Elsevier, Amsterdam, 2005).

  39. V. Barone, A. Koller, and G. E. Scuseria (2006). J. Phys. Chem. A 110, 10844.

    Article  CAS  Google Scholar 

  40. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.

    Article  CAS  Google Scholar 

  41. J. F. Gonthier, S. N. Steinmann, L. Roch, A. Ruggi, N. Luisier, K. Severin, and C. Corminboeuf (2012). Chem. Commun. 48, 9239.

    Article  CAS  Google Scholar 

  42. R. D. Johnson, in NIST Computational Chemistry Comparison and Benchmark Database III, (NIST, Washington, DC, 2006).

Download references

Acknowledgements

We gratefully acknowledge for the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Ghazi Mir Saeed, S. & Zahedi, M. [2 + 2] Cycloaddition and Bond Cleavage of Boron Nitride Cages with Iminoborane: A DFT Study. J Clust Sci 33, 29–35 (2022). https://doi.org/10.1007/s10876-020-01933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01933-1

Keywords

Navigation