Skip to main content
Log in

Boron-containing small rings: synthesis, properties, and application prospects

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The studies published over the last 15 years on the synthesis, physicochemical properties, and application prospects of saturated and unsaturated three- and four-membered boron-containing carbocycles with one boron atom — boriranes, borirenes, boretanes, and 1,2-dihydroboretanes — are summarized and systematized. Original methods for the synthesis of boriran(en)es based on photochemical isomerization of organoboranes, double hydroboration of acetylenes with imidazol-2-ylideneboranes, and [2+1]-cycloaddition of borylenes (:B–R) to unsaturated compounds are considered. A new method for the synthesis of substituted boriranes by Cp2TiCl2-catalyzed cycloboration of olefins with boron halides in the presence of metallic Mg is presented. The not numerous data on the synthesis of four-membered boracyclanes (boretanes and 1,2-dihydroboretes) based on thermal isomerization of cyclopropylboranes, [2+2]-cycloaddition of methyleneboranes to nitriles, 1,1-diethoxyethylene, or alkynes, as well as transmetallation of 1,8-dilithium naphthalene and titanacyclobutenes with boron halides, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. O. Khafizova, L. I. Khusainova, T. V. Tyumkina, U. M. Dzhemilev, Russ. J. Org. Chem., 2012, 48, 755; DOI: https://doi.org/10.1134/S1070428012060012.

    Article  CAS  Google Scholar 

  2. L. O. Khafizova, L. I. Khusainova, T. V. Tyumkina, U. M. Dzhemilev, Russ. J. Org. Chem., 2012, 48, 761; DOI: https://doi.org/10.1134/S1070428012060024.

    Article  CAS  Google Scholar 

  3. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, U. M. Dzhemilev, Russ. J. Org. Chem., 2014, 50, 309; DOI: https://doi.org/10.1134/S1070428014030014.

    Article  CAS  Google Scholar 

  4. I. V. Shcherbakova, in Comprehensive Heterocyclic Chemistry II, Vol. 1A, Ed. A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Elsevier, Amsterdam, 1996, p. 333.

  5. N. Farfán, H. I. Beltrán, in Comprehensive Heterocyclic Chemistry III, Vol. 1, 3rd Edn., Ed. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Elsevier, Amsterdam, 2008, p. 513.

  6. N. Farfán, P. Labra-Vázquez, R. Santillan, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019; DOI: https://doi.org/10.1016/b978-0-12-409547-2.14762-6.

    Google Scholar 

  7. E. Lukevics, O. Pudova, in Comprehensive Heterocyclic Chemistry II, Vol. 1B, Eds A. R. Katritzky, C. W. Rees, E. F. V. Scriven, Elsevier, Amsterdam, 1996, p. 887.

  8. M. Morita, R. C. Bauer, J. M. Stryker, in Comprehensive Heterocyclic Chemistry III, Vol. 2, Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Elsevier, Amsterdam, 2008, p. 555.

  9. P. Timms, Acc. Chem. Res., 1973, 6, 118; DOI: https://doi.org/10.1021/ar50064a002.

    Article  CAS  Google Scholar 

  10. H. Klusik, A. Berndt, Angew. Chem., Int. Ed., 1983, 22, 877; DOI: https://doi.org/10.1002/anie.198308771.

    Article  Google Scholar 

  11. S. E. Denmark, K. Nishide, A.-M. Faucher, J. Am. Chem. Soc., 1991, 113, 6675; DOI: https://doi.org/10.1021/ja00017a050.

    Article  CAS  Google Scholar 

  12. S. K. Mellerup, S. Wang, in PATAI’S Chemistry of Functional Groups, Wiley, 2019, p. 1; DOI:https://doi.org/10.1002/9780470682531.pat0974.

  13. Y.-L. Rao, H. Amarne, S.-B. Zhao, T. M. McCormick, S. Martić, Y. Sun, R.-Y. Wang, S. Wang, J. Am. Chem. Soc., 2008, 130, 12898; DOI: https://doi.org/10.1021/ja8052046.

    Article  CAS  PubMed  Google Scholar 

  14. C. Baik, Z. M. Hudson, H. Amarne, S. Wang, J. Am. Chem. Soc., 2009, 131, 14540; DOI: https://doi.org/10.1021/ja906430s.

    Article  CAS  Google Scholar 

  15. Y.-L. Rao, S. Wang, Inorg. Chem., 2011, 50, 12263; DOI: https://doi.org/10.1021/ic200658v.

    Article  CAS  PubMed  Google Scholar 

  16. C. Baik, S. K. Murphy, S. Wang, Angew. Chem., Int. Ed., 2010, 49, 8224; DOI: https://doi.org/10.1002/anie.201003144.

    Article  CAS  Google Scholar 

  17. S. K. Murphy, C. Baik, J.-S. Lu, S. Wang, Org. Lett., 2010, 12, 5266; DOI: https://doi.org/10.1021/ol102319t.

    Article  CAS  PubMed  Google Scholar 

  18. M. Kawa, Top. Curr. Chem., 2003, 228, 193; DOI: https://doi.org/10.1007/b11011.

    Article  CAS  PubMed  Google Scholar 

  19. Y.-L. Rao, S. Wang, Organometallics, 2011, 30, 4453; DOI: https://doi.org/10.1021/om200534m.

    Article  CAS  Google Scholar 

  20. H. Amarne, C. Baik, R.-Y. Wang, S. Wang, Organometallics, 2011, 30, 665; DOI: https://doi.org/10.1021/om101111p.

    Article  CAS  Google Scholar 

  21. Y.-L. Rao, H. Amarne, S. Wang, Coord. Chem. Rev., 2012, 256, 759; DOI: https://doi.org/10.1016/j.ccr.2011.11.009.

    Article  CAS  Google Scholar 

  22. Y.-L. Rao, H. Amarne, J.-S. Lu, S. Wang, Dalton Trans., 2013, 42, 638; DOI: https://doi.org/10.1039/c2dt31370g.

    Article  CAS  PubMed  Google Scholar 

  23. Y.-L. Rao, H. Amarne, L. D. Chen, M. L. Brown, N. J. Mosey, S. Wang, J. Am. Chem. Soc., 2013, 135, 3407; DOI: https://doi.org/10.1021/ja400917r.

    Article  CAS  PubMed  Google Scholar 

  24. Y.-L. Rao, C. Hörl, H. Braunschweig, S. Wang, Angew. Chem., Int. Ed., 2014, 53, 9086; DOI: https://doi.org/10.1002/anie.201404435.

    Article  CAS  Google Scholar 

  25. Z. M. Hudson, S.-B. Ko, S. Yamaguchi, S. Wang, Org. Lett., 2012, 14, 5610; DOI: https://doi.org/10.1021/ol302742g.

    Article  CAS  PubMed  Google Scholar 

  26. N. Wang, S.-B. Ko, J.-S. Lu, L. D. Chen, S. Wang, Chem.–Eur. J., 2013, 19, 5314; DOI: https://doi.org/10.1002/chem.201204048.

    Article  CAS  PubMed  Google Scholar 

  27. J. Wang, B. Jin, N. Wang, T. Peng, X. Li, Y. Luo, S. Wang, Macromolecules, 2017, 50, 4629; DOI: https://doi.org/10.1021/acs.macromol.7b00632.

    Article  CAS  Google Scholar 

  28. H. Amarne, C. Baik, S. K. Murphy, S. Wang, Chem.–Eur. J., 2010, 16, 4750; DOI: https://doi.org/10.1002/chem.200903582.

    Article  CAS  PubMed  Google Scholar 

  29. S. K. Mellerup, C. Li, T. Peng, S. Wang, Angew. Chem., Int. Ed., 2017, 56, 1; DOI: https://doi.org/10.1002/anie.201700096.

    Article  CAS  Google Scholar 

  30. S. K. Mellerup, K. Yuan, C. Nguyen, Z.-H. Lu, S. Wang, Chem.–Eur. J., 2016, 22, 12464; DOI: https://doi.org/10.1002/chem.201602410.

    Article  CAS  PubMed  Google Scholar 

  31. S. K. Mellerup, C. Li, X. Wang, J. Org. Chem., 2018, 83, 11970; DOI: https://doi.org/10.1021/acs.joc.8b01856.

    Article  CAS  PubMed  Google Scholar 

  32. S. K. Mellerup, C. Li, J. Radtke, X. Wang, Q.-S. Li, S. Wang, Angew. Chem., Int. Ed., 2018, 57, 9634; DOI: https://doi.org/10.1002/anie.201803760.

    Article  CAS  Google Scholar 

  33. S. K. Mellerup, S. Wang, Sci. China Mater., 2018, 61, 1249; DOI: https://doi.org/10.1007/s40843-018-9306-8.

    Article  CAS  Google Scholar 

  34. Z.-C. He, S. K. Mellerup, L. Liu, X. Wang, C. Dao, S. Wang, Angew. Chem., Int. Ed., 2019, 58, 6683; DOI: https://doi.org/10.1002/anie.201902231.

    Article  CAS  Google Scholar 

  35. Y.-L. Rao, L. D. Chen, N. J. Mosey, S. Wang, J. Am. Chem. Soc., 2012, 134, 11026; DOI: https://doi.org/10.1021/ja304211v.

    Article  CAS  PubMed  Google Scholar 

  36. H. Wang, J. Zhang, Z. Xie, Angew. Chem., Int. Ed., 2017, 56, 9198; DOI: https://doi.org/10.1002/anie.201704642.

    Article  CAS  Google Scholar 

  37. N. Galland, Y. Hannachi, D. V. Lanzisera, L. Andrews, Chem. Phys., 2000, 255, 205; DOI: https://doi.org/10.1016/s0301-0104(00)00091-4.

    Article  CAS  Google Scholar 

  38. D. Sillars, R. I. Kaiser, N. Galland, Y. Hannachi, J. Phys. Chem. A., 2003, 107, 5149; DOI: https://doi.org/10.1021/jp022469h.

    Article  CAS  Google Scholar 

  39. A. Kalaiselvan, P. Venuvanalingam, Int. J. Quantum Chem., 2007, 107, 1590; DOI: https://doi.org/10.1002/qua.21302.

    Article  CAS  Google Scholar 

  40. R. Gershoni-Poranne, A. Stanger, ChemPhysChem., 2012, 13, 2377; DOI: https://doi.org/10.1002/cphc.201200147.

    Article  CAS  PubMed  Google Scholar 

  41. M. Krasowska, H. F. Bettinger, J. Am. Chem. Soc., 2012, 134, 17094; DOI: https://doi.org/10.1021/ja306346h.

    Article  CAS  PubMed  Google Scholar 

  42. M. Krasowska, H. F. Bettinger, Chem.-Eur. J., 2016, 22, 10661; DOI: https://doi.org/10.1002/chem.201600933.

    Article  CAS  PubMed  Google Scholar 

  43. M. Krasowska, H. F. Bettinger, J. Org. Chem., 2018, 83, 1804; DOI: https://doi.org/10.1021/acs.joc.7b02715.

    Article  CAS  PubMed  Google Scholar 

  44. F.-P. Li, H.-Y. Zhu, Q.-S. Li, Z.-S. Li, Phys. Chem. Chem. Phys., 2019, 21, 8376; DOI: https://doi.org/10.1039/c9cp00569b.

    Article  CAS  PubMed  Google Scholar 

  45. H.-Y. Zhu, Q.-S. Li, ChemPhysChem., 2020, 21, 510; DOI: https://doi.org/10.1002/cphc.202000049.

    Article  CAS  PubMed  Google Scholar 

  46. P. Bissinger, H. Braunschweig, K. Kraft, T. Kupfer, Angew. Chem., Int. Ed., 2011, 50, 4704; DOI: https://doi.org/10.1002/anie.201007543.

    Article  CAS  Google Scholar 

  47. H. Braunschweig, C. Claes, A. Damme, A. Deißenberger, R. D. Dewhurst, C. Hörl, T. Kramer, Chem. Comm., 2015, 51, 1627; DOI: https://doi.org/10.1039/C4CC09036E.

    Article  CAS  PubMed  Google Scholar 

  48. C. Claes, Dissertation zur Erlangung des Naturwissenschaftlichen Doktorgrades, Julius-Maximilians-Universität Würzburg, Germany, 2016, 182 p.

    Google Scholar 

  49. T. R. McFadden, C. Fang, S. J. Geib, E. Merling, P. Liu, D. P. Curran, J. Am. Chem. Soc., 2017, 139, 1726; DOI: https://doi.org/10.1021/jacs.6b09873.

    Article  CAS  PubMed  Google Scholar 

  50. C. Walton, T. R. McFadden, D. P. Curran, J. Am. Chem. Soc., 2017, 139, 16514; DOI: https://doi.org/10.1021/jacs.7b10788.

    Article  CAS  PubMed  Google Scholar 

  51. A. Boussonnière, X. Pan, S. J. Geib, D. P. Curran, Organometallics, 2013, 32, 7445; DOI: https://doi.org/10.1021/om400932g.

    Article  CAS  Google Scholar 

  52. W. Dai, S. J. Geib, D. P. Curran, J. Am. Chem. Soc., 2019, 141, 3623; DOI: https://doi.org/10.1021/jacs.8b13010.

    Article  CAS  PubMed  Google Scholar 

  53. W. Dai, T. R. McFadden, D. P. Curran, H. A. Früchtl, J. C. Walton, J. Am. Chem. Soc., 2018, 140, 15868; DOI: https://doi.org/10.1021/jacs.8b09288.

    Article  CAS  PubMed  Google Scholar 

  54. M. Shimoi, I. Kevlishvili, T. Watanabe, K. Maeda, S. J Geib, D. P. Curran, P. Liu, T. Taniguchi, Angew. Chem., Ind. Ed., 2020, 59, 903; DOI: https://doi.org/10.1002/anie.201912234.

    Article  CAS  Google Scholar 

  55. U. M. Dzhemilev, A. G. Ibragimov, Russ. Chem. Rev., 2000, 69, 121; DOI: https://doi.org/10.1070/rc2000v069n02abeh000519.

    Article  CAS  Google Scholar 

  56. U. M. Dzhemilev, A. G. Ibragimov, Russ. Chem. Rev., 2005, 74, 807; DOI: https://doi.org/10.1070/rc2005v074n09abeh001171.

    Article  CAS  Google Scholar 

  57. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, U. M. Dzhemilev, Russ. J. Org. Chem., 2015, 51, 1516; DOI: https://doi.org/10.1134/S1070428015110019.

    Google Scholar 

  58. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, U. M. Dzhemilev, Russ. J. Gen. Chem., 2016, 86, 1438; DOI: https://doi.org/10.1134/s1070363216060335.

    Article  CAS  Google Scholar 

  59. US Pat 2640209; Byul. izobpet. [Invention Bull.], 2017, 36 (in Russian).

  60. US Pat 2561500; Byul. izobpet. [Invention Bull.], 2015, 24 (in Russian).

  61. L. O. Khafizova, L. I. Khusainova, T. V. Tyumkina, K. S. Ryazanov, N. R. Popodko, U. M. Dzhemilev, Mendeleev Commun., 2018, 28, 577; DOI: https://doi.org/10.1016/j.mencom.2018.11.003.

    Article  CAS  Google Scholar 

  62. T. V. Tyumkina, L. O. Khafizova, S. M. Idrisova, L. I. Khusainova, L. M. Khalilov, U. M. Dzhemilev, Kinet. Catal., 2017, 58, 549; DOI:https://doi.org/10.1134/s0023158417050226.

    Article  CAS  Google Scholar 

  63. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, K. S. Ryazanov, U. M. Dzhemilev, J. Organomet. Chem., 2017, 832, 12; DOI: https://doi.org/10.1016/j.jorganchem.2017.01.009.

    Article  CAS  Google Scholar 

  64. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, K. S. Ryazanov, N. R. Popodko, U. M. Dzhemilev, J. Organomet. Chem., 2018, 873, 73; DOI: https://doi.org/10.1016/j.jorganchem.2018.08.005.

    Article  CAS  Google Scholar 

  65. US Pat 2688195; Byul. izobret., 2019, 15 (in Russian).

  66. L. I. Khusainova, L. O. Khafizova, T. V. Tyumkina, K. S. Ryazanov, N. R. Popodko, U. M. Dzhemilev, J. Organomet. Chem., 2018, 872, 8; DOI: https://doi.org/10.1016/j.jorganchem.2018.07.019.

    Article  CAS  Google Scholar 

  67. L. I. Khusainova, L. O. Khafizova, K. S. Ryazanov, T. V. Tyumkina, U. M. Dzhemilev, J. Organomet. Chem., 2019, 898, 120858; DOI: https://doi.org/10.1016/j.jorganchem.2019.07.009.

    Article  CAS  Google Scholar 

  68. P. H. M. Budzelaar, A. J. Kos, T. Clark, P. V. R. Schleyer, Organometallics, 1985, 4, 429; doi:https://doi.org/10.1021/om00122a001.

    Article  CAS  Google Scholar 

  69. P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P. V. R. Schleyer, J. Am. Chem. Soc., 1985, 107, 2773; DOI: https://doi.org/10.1021/ja00295a033.

    Article  CAS  Google Scholar 

  70. C. Pues, A. Berndt, Angew. Chem., Int. Ed., 1984, 23, 313; DOI: https://doi.org/10.1002/anie.198403131.

    Article  Google Scholar 

  71. J. J. Eisch, B. Shafii, A. L. Rheingold, J. Am. Chem. Soc., 1987, 109, 2526; DOI: https://doi.org/10.1002/chin.198734236.

    Article  CAS  Google Scholar 

  72. H. Braunschweig, A. Damme, R. D. Dewhurst, S. Ghosh, T. Kramer, B. Pfaffinger, K. Radacki, A. Vargas, J. Am. Chem. Soc., 2013, 135, 1903; DOI: https://doi.org/10.1021/ja3110126.

    Article  CAS  PubMed  Google Scholar 

  73. H. Braunschweig, T. Kupfer, Chem. Commun., 2011, 47, 10903; DOI: https://doi.org/10.1039/c1cc13071d.

    Article  CAS  Google Scholar 

  74. H. Braunschweig, C.-W. Chiu, A. Damme, B. Engels, D. Gamon, C. Hörl, T. Kupfer, I. Krummenacher, K. Radacki, C. Walter, Chem.–Eur. J., 2012, 18, 14292; DOI: https://doi.org/10.1002/chem.201202345.

    Article  CAS  PubMed  Google Scholar 

  75. H. Braunschweig, P. Brenner, R. D. Dewhurst, I. Krummenacher, B. Pfaffinger, A. Vargas, Nat. Commun., 2012, 3, 872; DOI: https://doi.org/10.1038/ncomms1884.

    Article  PubMed  CAS  Google Scholar 

  76. M. E. Volpin, Yu. D. Koreshkov, V. G. Dulova, D. N. Kursanov, Tetrahedron, 1962, 18, 107; DOI: https://doi.org/10.1016/00404020(62)80030-1.

    Article  CAS  Google Scholar 

  77. B. Pachaly, R. West, Angew. Chem., Int. Ed., 1984, 23, 454; DOI: https://doi.org/10.1002/anie.198404541.

    Article  Google Scholar 

  78. H. Braunschweig, T. Herbst, D. Rais, F. Seeler, Angew. Chem., Int. Ed., 2005, 44, 7461; DOI: https://doi.org/10.1002/anie.200502524.

    Article  CAS  Google Scholar 

  79. H. Braunschweig, T. Herbst, K. Radacki, G. Frenking, M. A. Celik, Chem.–Eur. J., 2009, 15, 12099; DOI: https://doi.org/10.1002/chem.200901749.

    Article  CAS  PubMed  Google Scholar 

  80. H. Braunschweig, T. Herbst, D. Rais, S. Ghosh, T. Kupfer, K. Radacki, J. Am. Chem. Soc., 2009, 131, 8989; DOI: https://doi.org/10.1021/ja902198z.

    Article  CAS  PubMed  Google Scholar 

  81. C. E. Anderson, H. Braunschweig, R. D. Dewhurst, Organometallics, 2008, 27, 6381; DOI: https://doi.org/10.1021/om800883m.

    Article  CAS  Google Scholar 

  82. C. Habben, A. Meller, Chem. Ber., 1984, 117, 2531; DOI: https://doi.org/10.1002/cber.19841170725.

    Article  Google Scholar 

  83. C. D. Entwistle, T. B. Marder, Angew. Chem., Int. Ed., 2002, 41, 2927; DOI: https://doi.org/10.1002/1521-3773(20020816)41:16<2927::aid-anie2927>3.0.co;2-1.

    Article  CAS  Google Scholar 

  84. L. Ji, S. Griesbeck, T. B. Marder, Chem. Sci., 2017, 8, 846; DOI: https://doi.org/10.1039/c6sc04245g.

    Article  CAS  PubMed  Google Scholar 

  85. H. Braunschweig, Q. Ye, K. Radacki, Chem. Commun., 2009, 6979; DOI: https://doi.org/10.1039/b915926f.

  86. H. Braunschweig, Q. Ye, K. Radacki, T. Kupfer, Dalton Trans., 2011, 40, 3666; DOI: https://doi.org/10.1039/c0dt01694b.

    Article  CAS  PubMed  Google Scholar 

  87. H. Braunschweig, A. Damme, R. D. Dewhurst, H. Kelch, B. B. Macha, K. Radacki, A. Vargas, Q. Ye, Chem.–Eur. J., 2015, 21, 2377; DOI: https://doi.org/10.1002/chem.201405803.

    Article  CAS  PubMed  Google Scholar 

  88. H. Braunschweig, I. Fernandez, G. Frenking, K. Radacki, F. Seeler, Angew. Chem., Int. Ed., 2007, 46, 5215; DOI: https://doi.org/10.1002/anie.200700382.

    Article  CAS  Google Scholar 

  89. H. Braunschweig, M. A. Celik, R. D. Dewhurst, K. Ferkinghoff, K. Radacki, F. Weißenberger, Chem.–Eur. J., 2016, 22, 8596; DOI: https://doi.org/10.1002/chem.201600651.

    Article  CAS  PubMed  Google Scholar 

  90. H. Braunschweig, R. D. Dewhurst, K. Ferkinghoff, Chem. Commun., 2016, 52, 183; DOI: https://doi.org/10.1039/c5cc07503c.

    Article  CAS  Google Scholar 

  91. H. Braunschweig, R. D. Dewhurst, K. Radacki, C. W. Tate, A. Vargas, Angew. Chem., Int. Ed., 2014, 53, 6263; DOI: https://doi.org/10.1002/anie.201402815.

    Article  CAS  Google Scholar 

  92. R. I. Kaiser, H. F. Bettinger, Angew. Chem., Int. Ed., 2002, 41, 2350; DOI: https://doi.org/10.1002/1521-3773(20020703)41:13<2350::aid-anie2350>3.0.co;2-t.

    Article  CAS  Google Scholar 

  93. H. F. Bettinger, R. I. Kaiser, J. Phys. Chem. A., 2004, 108, 4576; DOI: https://doi.org/10.1021/jp0375259.

    Article  CAS  Google Scholar 

  94. F. Zhang, Y. Guo, X. Gu, R. I. Kaiser, Chem. Phys. Lett., 2007, 440, 56; DOI: https://doi.org/10.1016/j.cplett.2007.04.012.

    Article  CAS  Google Scholar 

  95. H. F. Bettinger, Chem. Commun., 2005, 2756; DOI: https://doi.org/10.1039/b419415b.

  96. H. F. Bettinger, J. Am. Chem. Soc., 2006, 128, 2534; DOI: https://doi.org/10.1021/ja0548642.

    Article  CAS  PubMed  Google Scholar 

  97. K. Edel, M. Krieg, D. Grote, H. F. Bettinger, J. Am. Chem. Soc., 2017, 139, 15151; DOI: https://doi.org/10.1021/jacs.7b08497.

    Article  CAS  PubMed  Google Scholar 

  98. J. Hahn, C. Keck, C. Maichle-Mössmer, E. V. Grotthuss, P. N. Ruth, A. Paesch, D. Stalke, H. F. Bettinger, Chem.–Eur. J., 2018, 24, 18634; DOI: https://doi.org/10.1002/chem.201804629.

    Article  CAS  PubMed  Google Scholar 

  99. A. Tapper, T. Schmitz, P. Paetzold, Chem. Ber., 1989, 122, 595; DOI: https://doi.org/10.1002/cber.19891220402.

    Article  CAS  Google Scholar 

  100. E. P. Mayer, H. Nöth, Chem. Ber., 1993, 126, 1551; DOI: https://doi.org/10.1002/cber.19931260708.

    Article  CAS  Google Scholar 

  101. M. Rubina, M. Rubin, Chem. Heterocycl. Compd., 2012, 48, 807; DOI: https://doi.org/10.1007/s10593-012-1060-9.

    Article  CAS  Google Scholar 

  102. R. Wehrmann, H. Klusik, A. Berndt, Angew. Chem., Int. Ed., 1984, 23, 369; DOI: https://doi.org/10.1002/anie.198403691.

    Article  Google Scholar 

  103. P. Paetzold, U. Englert, R. Finger, T. Schmitz, A. Tapper, R. Ziembinski, Z. Anorg. Allg. Chem., 2004, 630, 508; DOI: https://doi.org/10.1002/zaac.200300396.

    Article  CAS  Google Scholar 

  104. R. C. Bauer, Diss. Doct. Phil., University of Alberta, Canada, 2009, 237 p.; DOI: https://doi.org/10.7939/R3ZS5C.

    Google Scholar 

  105. J. F. Araneda, B. Neue, W. E. Piers, M. Parvez, Angew. Chem., Int. Ed., 2012, 51, 8546; DOI: https://doi.org/10.1002/ange.201204367.

    Article  CAS  Google Scholar 

  106. J. F. Araneda, W. E. Piers, M. Sgro, M. Parvez, Chem. Sci., 2014, 5, 3189; DOI: https://doi.org/10.1039/c4sc01201a.

    Article  CAS  Google Scholar 

  107. J. Zhao, C. Ru, Y. Bai, X. Wang, W. Chen, X. Wang, X. Pan, J. Wu, Inorg. Chem., 2018, 57, 12552; DOI: https://doi.org/10.1021/acs.inorgchem.8b01555.

    Article  CAS  PubMed  Google Scholar 

  108. L. Wang, Y. Fang, H. Mao, Y. Qu, J. Zuo, Z. Zhang, G. Tan, X. Wang, Chem.–Eur. J., 2017, 23, 6930; DOI: https://doi.org/10.1002/chem.201701308.

    Article  CAS  PubMed  Google Scholar 

  109. T. W. Hudnall, C.-W. Chiu, F. P. Gabbaï, Acc. Chem. Res., 2009, 42, 388; DOI: https://doi.org/10.1021/ar8001816.

    Article  CAS  PubMed  Google Scholar 

  110. J. D. Hoefelmeyer, F. P. Gabbaï, Organometallics, 2002, 21, 982; DOI: https://doi.org/10.1021/om010946x.

    Article  CAS  Google Scholar 

  111. J. D. Hoefelmeyer, M. Schulte, M. Tschinkl, F. P. Gabbaï, Coord. Chem. Rev., 2002, 235, 93; DOI: https://doi.org/10.1016/s00108545(02)00180-7.

    Article  CAS  Google Scholar 

  112. J. D. Hoefelmeyer, S. Solé, F. P. Gabbaï, Dalton Trans., 2004, 1254; DOI: https://doi.org/10.1039/b316505a.

  113. C.-W. Chiu, F. P. Gabbaï, J. Am. Chem. Soc., 2006, 128, 14248; DOI: https://doi.org/10.1021/ja0658463.

    Article  CAS  PubMed  Google Scholar 

  114. S. Solé, F. P. Gabbaï, Chem. Commun., 2004, 11, 1284; DOI: https://doi.org/10.1039/b403596h.

    Article  Google Scholar 

  115. C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbaï, Chem. Rev., 2010, 110, 3958; DOI: https://doi.org/10.1021/cr900401a.

    Article  CAS  PubMed  Google Scholar 

  116. M. Melaïmi, S. Sole, C.-W. Chiu, H. Wang, F. P. Gabbaï, Inorg. Chem., 2006, 45, 8136; DOI: https://doi.org/10.1021/ic060709s.

    Article  PubMed  CAS  Google Scholar 

  117. M. Schulte, F. P. Gabbaï, Chem.-Eur. J., 2002, 8, 3802; DOI: https://doi.org/10.1002/1521-3765(20020816)8:16<3802::aid-chem3802>3.0.co;2-5.

    Article  CAS  PubMed  Google Scholar 

  118. M. Melaimi, F. P. Gabbaï, J. Am. Chem. Soc., 2005, 127, 9680; DOI: https://doi.org/10.1021/ja053058s.

    Article  CAS  PubMed  Google Scholar 

  119. M. H. Lee, F. P. Gabbaï, Inorg. Chem., 2007, 46, 8132; DOI: https://doi.org/10.1021/ic700360a.

    Article  CAS  PubMed  Google Scholar 

  120. C. L. Dorsey, P. Jewula, T. W. Hudnall, J. D. Hoefelmeyer, T. J. Taylor, N. R. Honesty, C.-W. Chiu, M. Schulte, F. P. Gabbaï, Dalton Trans., 2008, 4442; DOI: https://doi.org/10.1039/b801040d.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. O. Khafizova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1851–1892, October, 2021.

The review was prepared with the financial support of the Russian Foundation for Basic Research (Project No. 19-13-50390 “Ekspansiya”) and the Ministry of Science and Higher Education of Russian Federation (Federal program No. AAAAA19-119022290008-6 (2019–2021)).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhemilev, U.M., Khusainova, L.I., Ryazanov, K.S. et al. Boron-containing small rings: synthesis, properties, and application prospects. Russ Chem Bull 70, 1851–1892 (2021). https://doi.org/10.1007/s11172-021-3292-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3292-2

Key words

Navigation