Skip to main content
Log in

Enhanced Removal of Crystal Violet Dye and Anti-Biofilm Activity of Ti Doped CeO2 Nanoparticles Synthesized by Phoenix Dactylifera Mediated Green Method

  • Original Papers
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Currently eco-friendly green method is used for the synthesis of biocompatible pure and Ti doped cerium oxide nanoparticles. Various chemical methods have been reported for the synthesis of nanomaterials. In the present work, the green chemistry route was employed for the synthesis of Ti doped CeO2 nanoparticles (nanoceria) by Phoenix Dactylifera fruit extract. Their structural, morphological and optical properties were investigated by XRD, XPS, UV-DRS, GC–MS, FTIR and TEM. Structural analysis confirms the formation of Ti doped CeO2 nanoparticles with particle size ranging from 7 to 9 nm and XPS analysis confirms the presence of Ti+4 ions in CeO2 nanoparticles. It was observed that Ti doped CeO2 nanoparticles (NPs) exhibited the enhanced removal of crystal violet dye and maximum degradation was obtained by 15% Ti doped nanoceria. Antibiofilm activity of Ti doped CeO2 nanoparticles were also investigated against P. aeruginosa PAO1, which shows maximum antibiofilm activity for 20% Ti doped CeO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Bandara and J. A. Mielczarski (1999). J. Kiwi. Langmuir.. https://doi.org/10.1021/la990030j.

    Article  Google Scholar 

  2. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, and H. Fu (2012). Chem. Commun.. https://doi.org/10.1039/c2cc16434e.

    Article  Google Scholar 

  3. P. Kaur, P. Bansal, and D. Sud (2013). J. Korean Chem. Soc.. https://doi.org/10.5012/jkcs.2013.57.3.382.

    Article  Google Scholar 

  4. K. Maeda and K. Domen (2010). J. Phys. Chem. Lett.. https://doi.org/10.1021/jz1007966.

    Article  Google Scholar 

  5. P. A. Mangrulkar, V. Polshettiwar, N. K. Labhsetwar, R. S. Varma, and S. S. Rayalu (2012). Nanoscale.. https://doi.org/10.1039/c2nr30819c.

    Article  PubMed  Google Scholar 

  6. E. A. Rozhkova, I. Ulasov, B. Lai, N. M. Dimitrijevic, M. S. Lesniak, and T. Rajh (2009). Nano Lett.. https://doi.org/10.1021/nl901610f.

    Article  PubMed  PubMed Central  Google Scholar 

  7. P. Sathishkumar, R. Sweena, J. J. Wu, and S. Anandan (2011). Chem. Eng. J.. https://doi.org/10.1016/j.cej.2011.03.074.

    Article  Google Scholar 

  8. P. Chaiyo, B. Duangsing, O. Thumthan, J. Nutariya, and S. Pukird (2017). J. Phys. Conf. Ser.. https://doi.org/10.1088/1742-6596/901/1/012095.

    Article  Google Scholar 

  9. I. Abdul Rahman, M.T.M. Ayob, S. Radiman. J. Nanotechnol. (2014) doi:10.1155/2014/212694.

    Article  Google Scholar 

  10. A. Ahmed, M. Naseem Siddique, U. Alam, T. Ali, P. Tripathi. Appl. Surf. Sci. (2019) doi:10.1016/j.apsusc.2018.08.182.

    Article  Google Scholar 

  11. Z. C. Orel and B. Orel (1994). Phys. Status Solidi.. https://doi.org/10.1002/pssb.2221860135.

    Article  Google Scholar 

  12. H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, and I. Djerdj (2012). RSC Adv.. https://doi.org/10.1039/c2ra21590j.

    Article  PubMed Central  Google Scholar 

  13. S.B. Khan, M. Faisal, M.M. Rahman, K. Akhtar, A.M. Asiri, A. Khan, K.A. Alamry. 2013 www.electrochemsci.org.

  14. Y. Wang, Q. Wang, X. Zhan, F. Wang, and M. Safdar (2013). J. He. Nanoscale.. https://doi.org/10.1039/c3nr01577g.

    Article  Google Scholar 

  15. B. Murugan and A. V. Ramaswamy (2007). JACS Comm.. https://doi.org/10.1021/ja066834k.

    Article  Google Scholar 

  16. S. H. Lee, Z. Lu, S. V. Babu, and E. Matijević (2002). J. Mater. Res.. https://doi.org/10.1557/JMR.2002.0396.

    Article  Google Scholar 

  17. M. Fu, L. Wei, Y. Li, X. Zhou, S. Hao, and Y. Li (2009). Solid State Sci.. https://doi.org/10.1016/j.solidstatesciences.2009.08.014.

    Article  Google Scholar 

  18. S. Maensiri, S. Labuayai, P. Laokul, J. Klinkaewnarong, and E. Swatsitang (2014). Jpn. J. Appl. Phys.. https://doi.org/10.7567/JJAP.53.06JG14.

    Article  Google Scholar 

  19. S. Pavasupree, Y. Suzuki, S. Pivsa-art, S. Pavasupree, Y. Suzuki, S. Pivsa-art, and S. Yoshikawa (2005). Sci. and Tech. of Adv. Mat.. https://doi.org/10.1016/j.stam.2005.02.001.

    Article  Google Scholar 

  20. N. Izu, W. Shin, N. Murayama, and S. Kanzaki (2002). Sensors Actuators. B Chem.. https://doi.org/10.1016/S0925-4005(02)00224-1.

    Article  Google Scholar 

  21. T. Inoue, T. Setoguchi, K. Eguchi, and H. Arai (1989). Solid State Ionics.. https://doi.org/10.1016/0167-2738(89)90310-X.

    Article  Google Scholar 

  22. J. C. Chen, W. C. Chen, Y. C. Tien, and C. J. Shih (2010). J. Alloys Compd.. https://doi.org/10.1016/j.jallcom.2010.01.151.

    Article  Google Scholar 

  23. R. Suresh, V. Ponnuswamy, and R. Mariappan (2013). Appl. Surf. Sci.. https://doi.org/10.1016/j.apsusc.2013.02.062.

    Article  Google Scholar 

  24. X. Wei, Y. Wang, Y. Feng, X. Xie, X. Li, and S. Yang (2019). Sci. Rep.. https://doi.org/10.1038/s41598-018-36794-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. B. Khan, M. Faisal, M. M. Rahman, and A. Jamal (2011). Sci. Total Environ.. https://doi.org/10.1016/j.scitotenv.2011.04.019.

    Article  PubMed  Google Scholar 

  26. S. Gnanam and V. Rajendran (2018). J. Alloys Compd.. https://doi.org/10.1016/j.jallcom.2017.11.330.

    Article  Google Scholar 

  27. J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T. Rajendra Kumar. Mater. Sci. Semicond. Process. (2014) doi:10.1016/j.mssp.2014.03.054.

    Article  Google Scholar 

  28. Mane CB, Khobare RV, Patil RP, Pawar RP (2018). Int. J. App. Engg. Res. https://www.ripublication.com.

  29. W. Zhou, J. Zhu, F. Wang, M. Cao, and T. Zhao (2017). Mater. Lett.. https://doi.org/10.1016/j.matlet.2017.06.117.

    Article  Google Scholar 

  30. Y. Kuang, X. He, Z. Zhang, Y. Li, H. Zhang, Y. Ma, Z. Wu, and Z. Chai (2011). J. Nanosci. Nanotechnol.. https://doi.org/10.1166/jnn.2011.3858.

    Article  PubMed  Google Scholar 

  31. A. Arumugam, C. Karthikeyan, A.S. Haja Hameed, K. Gopinath, S. Gowri, V. Karthika. Mater. Sci. Eng. (2015) https://doi.org/10.1016/j.msec.2015.01.042.

  32. K. M. Kumar, M. Mahendhiran, M. C. Diaz, N. Hernandez-Como, A. Hernandez-Eligio, G. Torres-Torres, S. Godavarthi, and L. M. Gomez (2018). Mater. Lett.. https://doi.org/10.1016/j.matlet.2017.11.097.

    Article  Google Scholar 

  33. M. Darroudi, S. Javad, R. Kazemi, and H. Ali (2014). Ceram. Int.. https://doi.org/10.1016/j.ceramint.2013.12.089.

    Article  Google Scholar 

  34. H. Kargar, H. Ghazavi, and M. Darroudi (2015). Ceram. Int.. https://doi.org/10.1016/j.ceramint.2014.11.108.

    Article  Google Scholar 

  35. N. Singh, J. Rajwade, and K. M. Paknikar (2019). Colloids Surfaces B Biointerfaces.. https://doi.org/10.1016/j.colsurfb.2018.12.032.

    Article  PubMed  Google Scholar 

  36. G. Arya, R. M. Kumari, N. Sharma, N. Gupta, A. Kumar, S. Chatterjee, and S. Nimesh (2019). J. Photochem. Photobiol. B Biol.. https://doi.org/10.1016/j.jphotobiol.2018.11.005.

    Article  Google Scholar 

  37. K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, and M. Malik (2016). Sci. Rep.. https://doi.org/10.1038/srep38064.

    Article  PubMed  PubMed Central  Google Scholar 

  38. R.R. Nair, J. Arulraj, K.R. Sunaja Devi. Mater. Today Proc. (2016) https://doi.org/10.1016/j.matpr.2016.04.054.

  39. Y. Zhou and J. Zhou (2010). J. Phys. Chem. Lett.. https://doi.org/10.1021/jz1004297.

    Article  PubMed  PubMed Central  Google Scholar 

  40. S. Sathyamurthy, K. J. Leonard, R. T. Dabestani, and M. P. Paranthaman (2005). Nanotechnology.. https://doi.org/10.1088/0957-4484/16/9/089.

    Article  Google Scholar 

  41. S. Gnanam and V. Rajendran (2011). J. Sol-Gel Sci. Technol.. https://doi.org/10.1007/s10971-010-2356-9.

    Article  Google Scholar 

  42. E. K. Goharshadi, S. Samiee, and P. Nancarrow (2011). J. Colloid Interface Sci.. https://doi.org/10.1016/j.jcis.2011.01.063.

    Article  PubMed  Google Scholar 

  43. M. Farahamndjou, M. Zarinkamar, T. Firoozabadi (2016) Rev. Mex. Física. 62 :496–499

    Google Scholar 

  44. K. Kaneko, K. Inoke, B. Freitag, A. B. Hungria, P. A. Midgley, T. W. Hansen, J. Zhang, S. Ohara, and T. Adschiri (2007). Nano Lett.. https://doi.org/10.1021/nl062677b.

    Article  PubMed  Google Scholar 

  45. S. Yabe and T. Sato (2003). J. Solid State Chem.. https://doi.org/10.1016/S0022-4596(02)00139-1.

    Article  Google Scholar 

  46. A. Burns and W. T. Self (2018). Smart Nanoparticles Biomed.. https://doi.org/10.1016/b978-0-12-814156-4.00011-2.

    Article  Google Scholar 

  47. W. Lin, Y. W. Huang, X. D. Zhou, and Y. Ma (2006). Int. J. Toxicol.. https://doi.org/10.1080/10915810600959543.

    Article  PubMed  Google Scholar 

  48. M. Sack-zschauer, E. Karaman-aplak, C. Wyrich, S. Das, T. Schubert, H. Meyer, C. Janiak, S. Seal, W. Stahl, and P. Brenneisen (2017). J. Biomed. Nanotech.. https://doi.org/10.1166/jbn.2017.2452.

    Article  Google Scholar 

  49. W. Ran and X. Xue (2018). Sci. China. Life Sci.. https://doi.org/10.1007/s11427-017-9292-7.

    Article  PubMed  Google Scholar 

  50. G. Ramanathan, S. V. Rathan, and K. R. Murali (2019). SN Appl. Sci.. https://doi.org/10.1007/s42452-018-0103-y.

    Article  Google Scholar 

  51. G. Magesh, B. Viswanathan, R.P. Viswanath, T.K. Varadarajan. Ind. J. Chem. (2009).

  52. F. A. Qais, M. S. Khan, and I. Ahmad (2019). Microb. Pathog.. https://doi.org/10.1016/j.micpath.2018.11.030.

    Article  PubMed  Google Scholar 

  53. V. G. Borodina and Y. A. Mirgorod (2014). Kinet. Catal.. https://doi.org/10.1134/S0023158414060044.

    Article  Google Scholar 

  54. S. Jain and M. S. Mehata (2017). Sci. Rep.. https://doi.org/10.1038/s41598-017-15724-8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. V. V Makarov, A.J. Love, O. V Sinitsyna, S.S. Makarova, I. V Yaminsky, M.E. Taliansky, N.O. Kalinina. (2014) PMC Acta Naturae 6: 35-44

    Article  CAS  Google Scholar 

  56. P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, and J. L. Duroux (2006). Food Chem.. https://doi.org/10.1016/j.foodchem.2005.05.042.

    Article  Google Scholar 

  57. A.S. Ahmed, A. Azam, M. Muhamed Shafeeq, M. Chaman, S. Tabassum. J. Phys. Chem. Solids. (2012) https://doi.org/10.1016/j.jpcs.2012.02.030.

  58. H. Wang, J. Zhu, J. Zhu, X. Liao, S. Xu, T. Ding, H. Chen, and C. Chemistry (2002). Phys Chem. Chem. Phys.. https://doi.org/10.1039/b201394k.

    Article  Google Scholar 

  59. B. Yan and H. Zhu (2008). J. Nanoparticle Res.. https://doi.org/10.1007/s11051-008-9371-6.

    Article  Google Scholar 

  60. Z.X. Lim, K.Y. Cheong (2015) Phys. Chem. Chem. Phys. https://doi.org/10.1039/c5cp04622j.

    Article  PubMed  Google Scholar 

  61. S. Phoka, P. Laokul, E. Swatsitang, and V. Promarak (2009). Mat. Chem. Phys.. https://doi.org/10.1016/j.matchemphys.2008.12.031.

    Article  Google Scholar 

  62. M. El Khalifi, F. Picaud, and M. Bizi (2016). Anal. Methods.. https://doi.org/10.1039/c6ay00374e.

    Article  Google Scholar 

  63. A. S. Ahmed, S. M. Muhamed, M. L. Singla, S. Tabassum, A. H. Naqvi, and A. Azam (2010). J. Lumin.. https://doi.org/10.1016/j.jlumin.2010.07.017.

    Article  Google Scholar 

  64. D. Channei, B. Inceesungvorn, N. Wetchakun, and S. Phanichphant (2013). Int. J. Photoenergy.. https://doi.org/10.1155/2013/484831.

    Article  Google Scholar 

  65. M. Qamaruddin, I. Khan, O. O. Ajumobi, S. A. Ganiyu, and A. Qurashi (2019). Sol. Energy.. https://doi.org/10.1016/j.solener.2019.05.058.

    Article  Google Scholar 

  66. M. Rahmat, A. Rehman, S. Rahmat, H. N. Bhatti, M. Iqbal, W. S. Khan, S. Z. Bajwa, R. Rahmat, and A. Nazir (2019). J. Mater. Res. Technol.. https://doi.org/10.1016/j.jmrt.2019.08.038.

    Article  Google Scholar 

  67. R. E. Palma-Goyes, F. L. Guzmán-Duque, G. Peñuela, I. González, J. L. Nava, and R. A. Torres-Palma (2010). Chemosphere.. https://doi.org/10.1016/j.chemosphere.2010.07.020.

    Article  PubMed  Google Scholar 

  68. F. Guzman-Duque, C. Pétrier, C. Pulgarin, G. Peñuela, and R. A. Torres-Palma (2011). Ultrason. Sonochem.. https://doi.org/10.1016/j.ultsonch.2010.07.019.

    Article  PubMed  Google Scholar 

  69. A. S. Ahmed, T. Ahamad, N. Ahmad, and M. Z. Khan (2019). Mater. Chem. Phys.. https://doi.org/10.1016/j.matchemphys.2019.121906.

    Article  Google Scholar 

  70. I. Sutherland (2001). Microbiology.. https://doi.org/10.1099/00221287-147-1-3.

    Article  PubMed  Google Scholar 

  71. H. C. Flemming (2010). J. Wingender. Nat. Rev. Microbiol.. https://doi.org/10.1038/nrmicro2415.

    Article  Google Scholar 

  72. K.S. Venkatesh, K. Gopinath, N.S. Palani, A. Arumugam, S.P. Jose, S. Asath Bahadur, R. Ilangovan.(2016) RSC Adv. https://doi.org/10.1039/c6ra05003d

    Article  Google Scholar 

  73. A. Pompilio, V. Crocetta, S. De Nicola, F. Verginelli, E. Fiscarelli, and G. Di Bonaventura (2015). Front. Microbiol.. https://doi.org/10.3389/fmicb.2015.00951.

    Article  PubMed  PubMed Central  Google Scholar 

  74. N. Qin, X. Tan, Y. Jiao, L. Liu, W. Zhao, S. Yang, and A. Jia (2014). Sci. Rep.. https://doi.org/10.1038/srep05467.

    Article  PubMed  PubMed Central  Google Scholar 

  75. S. T. Khan, J. Ahmad, M. Ahamed, J. Musarrat, and A. A. Al-Khedhairy (2016). J. Biol. Inorg. Chem.. https://doi.org/10.1007/s00775-016-1339-x.

    Article  PubMed  Google Scholar 

  76. N. A. Al-Shabib, F. M. Husain, F. A. Qais, N. Ahmad, A. Khan, A. A. Alyousef, M. Arshad, S. Noor, J. M. Khan, P. Alam, T. H. Albalawi, and S. A. Shahzad (2020). Front. Microbiol.. https://doi.org/10.3389/fmicb.2020.01680.

    Article  PubMed  PubMed Central  Google Scholar 

  77. J. Rajkumari, C. M. Magdalane, B. Siddhardha, J. Madhavan, G. Ramalingam, N. A. Al-Dhabi, M. V. Arasu, A. K. M. Ghilan, V. Duraipandiayan, and K. Kaviyarasu (2019). J. Photochem. Photobiol. B Biol.. https://doi.org/10.1016/j.jphotobiol.2019.111667.

    Article  Google Scholar 

  78. M. Oves, M. Arshad, M. S. Khan, A. S. Ahmed, A. Azam, and I. M. I. Ismail (2015). J. Saudi Chem. Soc.. https://doi.org/10.1016/j.jscs.2015.05.003.

    Article  Google Scholar 

  79. A. M. Alotaibi, B. A. D. Williamson, S. Sathasivam, A. Kafizas, M. Alqahtani, C. Sotelo-Vazquez, J. Buckeridge, J. Wu, S. P. Nair, D. O. Scanlon, and I. P. Parkin (2020). ACS Appl. Mater. Interfaces.. https://doi.org/10.1021/acsami.9b22056.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Q. Li, S. Mahendra, D. Y. Lyon, L. Brunet, M. V. Liga, D. Li, and P. J. J. Alvarez (2008). Water Res.. https://doi.org/10.1016/j.watres.2008.08.015.

    Article  PubMed  Google Scholar 

  81. P. V. Kumar, M. Karthikeyan, and A. J. Ahamed (2016). J. Environ. Nanotechnol.. https://doi.org/10.13074/jent.2016.06.162189.

    Article  Google Scholar 

  82. P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli (2012). J. Bot.. https://doi.org/10.1155/2012/217037.

    Article  Google Scholar 

  83. K. Pradeev, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z. Z. Chowdhury, M. Rafie, B. Johan, F. A. Aziz, R. F. Rafique, R. T. Selvi, and R. Rathina (2018). Nanoscale Res. Lett.. https://doi.org/10.1186/s11671-018-2643-x.

    Article  Google Scholar 

  84. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic (2012). Int. J. Nanomedicine.. https://doi.org/10.2147/IJN.S29020.

    Article  PubMed  PubMed Central  Google Scholar 

  85. N. Talebian, S. M. Amininezhad, and M. Doudi (2013). J. Photochem. Photobiol. B Biol.. https://doi.org/10.1016/j.jphotobiol.2013.01.004.

    Article  Google Scholar 

Download references

Acknowledgements

For financial support in the form of UGC start up grant, authors are thankful to the University Grant Commission, New Delhi. Authors are also grateful to the R&D division of Integral University, Lucknow for providing MNC no.(manuscript communication number) IU/R&D/2020-MCN 000813, Mr. Nafees Ahmad, Department of Chemistry, Aligarh Muslim University Aligarh for UV-DRS facility, Department of Physics, Aligarh Muslim University for XRD facility and Mr. Arif Iqbal for assisting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arham S. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.S., Iqbal, A., Shafi, A. et al. Enhanced Removal of Crystal Violet Dye and Anti-Biofilm Activity of Ti Doped CeO2 Nanoparticles Synthesized by Phoenix Dactylifera Mediated Green Method. J Clust Sci 32, 1723–1737 (2021). https://doi.org/10.1007/s10876-020-01925-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01925-1

Keywords

Navigation