Skip to main content
Log in

Theranostical application of nanomedicine for treating central nervous system disorders

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The primary reason for the failure of traditional medicine in treating the disorders of the central nervous system (CNS) is the obstruction to traverse the blood-brain barrier (BBB). Due to the unique physiochemical properties of nanoparticles, they can preferably help deliver drugs passing through the BBB. Researchers have been investigating the capacity of multifunctional nanomaterials as theranostical agents. However, some of the studies have reported controversial results, which might be due to different schematic designs, including size, surface charge, and shape. This review summarizes the applications of nanoparticles to overcome the BBB or contribute to improving the diagnostic and therapeutic effects in CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adak, A., Das, G., Barman, S., Mohapatra, S., Bhunia, D., Jana, B., and Ghosh, S. (2017). Biodegradable neuro-compatible peptide hydrogel promotes neurite outgrowth, shows significant neuroprotection, and delivers anti-Alzheimer drug. ACS Appl Mater Interfaces 9, 5067–5076.

    Article  CAS  PubMed  Google Scholar 

  • Addington, C.P., Heffernan, J.M., Millar-Haskell, C.S., Tucker, E.W., Sirianni, R.W., and Stabenfeldt, S.E. (2015). Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels. Biomaterials 72, 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal, R., Singh, V., Jurney, P., Shi, L., Sreenivasan, S.V., and Roy, K. (2013). Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 110, 17247–17252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alyautdin, R.N., Petrov, V.E., Langer, K., Berthold, A., Kharkevich, D.A., and Kreuter, J. (1997). Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Res 14, 325–328.

    Article  CAS  Google Scholar 

  • Amiri, H., Saeidi, K., Borhani, P., Manafirad, A., Ghavami, M., and Zerbi, V. (2013). Alzheimer’s disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. ACS Chem Neurosci 4, 1417–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghese, C., Cattaruzza, L., Fau-Pivetta, E., Pivetta, E., Fau-Normanno, N., Normanno, N., Fau-De Luca, A., De Luca, A., Fau-Mazzucato, M., Mazzucato, M., Fau-Celegato, M., and Aldinucci, D. (2013). Gefitinib inhibits the cross-talk between mesenchymal stem cells and prostate cancer cells leading to tumor cell proliferation and inhibition of docetaxel activity. J Cell Biochem 114, 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale, A., Merlo, D., Giunchedi, P., and Biocca, S. (2014). Therapeutic application of intrabodies against age-related neurodegenerative disorders. CPD 20, 6028–6036.

    Article  CAS  Google Scholar 

  • Carroll, R.T., Bhatia, D., Geldenhuys, W., Bhatia, R., Miladore, N., Bishayee, A., and Sutariya, V. (2010). Brain-targeted delivery of Tempolloaded nanoparticles for neurological disorders. J Drug Targeting 18, 665–674.

    Article  CAS  Google Scholar 

  • Chang, J.H., Tsai, P.H., Chen, W., Chiou, S.H., and Mou, C.Y. (2017). Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons. J Mater Chem B 5, 3012–3023.

    Article  CAS  Google Scholar 

  • Chen, G., Chen, K.S., Knox, J., Inglis, J., Bernard, A., Martin, S.J., Justice, A., McConlogue, L., Games, D., Freedman, S.B., et al. (2000). A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408, 975–979.

    Article  CAS  PubMed  Google Scholar 

  • Choi, I., and Lee, L.P. (2013). Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS Nano 7, 6268–6277.

    Article  CAS  PubMed  Google Scholar 

  • Das, A.M., Seynhaeve, A.L.B., Rens, J.A.P., Vermeulen, C.E., Koning, G. A., Eggermont, A.M.M., and Ten Hagen, T.L.M. (2013). Differential TIMP3 expression affects tumor progression and angiogenesis in melanomas through regulation of directionally persistent endothelial cell migration. Angiogenesis 17, 163–177.

    Article  PubMed  Google Scholar 

  • Delalat, B., Sheppard, V.C., Rasi Ghaemi, S., Rao, S., Prestidge, C.A., McPhee, G., Rogers, M.L., Donoghue, J.F., Pillay, V., Johns, T.G., et al. (2015). Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 6, 8791.

    Article  CAS  PubMed  Google Scholar 

  • Demeritte, T., Viraka Nellore, B.P., Kanchanapally, R., Sinha, S.S., Pramanik, A., Chavva, S.R., and Ray, P.C. (2015). Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces 7, 13693–13700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., Mensah, G.A., Connor, M., Bennett, D.A., Moran, A.E., Sacco, R.L., Anderson, L., Truelsen, T., et al. (2014). Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383, 245–255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, W., and Wang, J. (2014). Synthetic micro/nanomotors in drug delivery. Nanoscale 6, 10486–10494.

    Article  CAS  PubMed  Google Scholar 

  • Geldenhuys, W., Wehrung, D., Groshev, A., Hirani, A., and Sutariya, V. (2015). Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm Dev Tech 20, 497–506.

    Article  CAS  Google Scholar 

  • Geng, J., Li, M., Ren, J., Wang, E., and Qu, X. (2011). Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed 50, 4184–4188.

    Article  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704–706.

    Article  CAS  PubMed  Google Scholar 

  • Godinho, B.M.D.C., Ogier, J.R., Darcy, R., O’Driscoll, C.M., and Cryan, J. F. (2013). Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm 10, 640–649.

    Article  CAS  PubMed  Google Scholar 

  • Han, Q., Cai, S., Yang, L., Wang, X., Qi, C., Yang, R., and Wang, C. (2017). Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer’s disease. ACS Appl Mater Interfaces 9, 21116–21123.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J.A., and Higgins, G.A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185.

    Article  CAS  PubMed  Google Scholar 

  • He, X.P., Deng, Q., Cai, L., Wang, C.Z., Zang, Y., Li, J., Chen, G.R., and Tian, H. (2014). Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer’s disease. ACS Appl Mater Interfaces 6, 5379–5382.

    Article  CAS  PubMed  Google Scholar 

  • Hu, B., Dai, F., Fan, Z., Ma, G., Tang, Q., and Zhang, X. (2015). Nanotheranostics: Congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv Mater 27, 5499–5505.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Zhang, F., Wang, H., Niu, G., Choi, K.Y., Swierczewska, M., Zhang, G., Gao, H., Wang, Z., Zhu, L., et al. (2013). Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34, 1772–1780.

    Article  CAS  PubMed  Google Scholar 

  • Jo, D.H., Kim, J.H., Lee, T.G., and Kim, J.H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. NanoMed-Nanotechnol Biol Med 11, 1603–1611.

    Article  CAS  Google Scholar 

  • Khalil, S., Holy, M., Grado, S., Fleming, R., Kurita, R., Nakamura, Y., and Goldfarb, A. (2017). A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv 1, 1181–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C.K., Kim, T., Choi, I.Y., Soh, M., Kim, D., Kim, Y.J., Jang, H., Yang, H.S., Kim, J.Y., Park, H.K., et al. (2012). Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed 51, 11039–11043.

    Article  CAS  Google Scholar 

  • Kim, T., and Hyeon, T. (2014). Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25, 012001.

    Article  PubMed  Google Scholar 

  • Kouyoumdjian, H., Zhu, D.C., El-Dakdouki, M.H., Lorenz, K., Chen, J., Li, W., and Huang, X. (2013). Glyconanoparticle aided detection of β- amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. ACS Chem Neurosci 4, 575–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreuter, J. (2014). Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv Drug Delivery Rev 71, 2–14.

    Article  CAS  Google Scholar 

  • Kwon, H.J., Cha, M.Y., Kim, D., Kim, D.K., Soh, M., Shin, K., Hyeon, T., and Mook-Jung, I. (2016). Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10, 2860–2870.

    Article  CAS  PubMed  Google Scholar 

  • Lai, L., Jiang, X., Han, S., Zhao, C., Du, T., Rehman, F.U., Zheng, Y., Li, X., Liu, X., Jiang, H., et al. (2017). In vivo biosynthesized zinc and iron oxide nanoclusters for high spatiotemporal dual-modality bioimaging of Alzheimer’s disease. Langmuir 33, 9018–9024.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., Hwang, H.S., Lee, S., Kim, B., Kim, J.O., Oh, K.T., Lee, E.S., Choi, H.G., and Youn, Y.S. (2017). Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv Mater 29, 1605563.

    Article  Google Scholar 

  • Lee, J.H., Ju, J.E., Kim, B.I., Pak, P.J., Choi, E.K., Lee, H.S., and Chung, N. (2014). Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33, 2759–2766.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.M., and Nguyen, S.B.T. (2013). Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules 46, 9169–9180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiro, V., Duque Santos, S., Lopes, C.D.F., and Paula Pêgo, A. (2017). Dendrimers as powerful building blocks in central nervous system disease: headed for successful nanomedicine. Adv Func Mater, 1700313.

  • Li, J., Cai, P., Shalviri, A., Henderson, J.T., He, C., Foltz, W.D., Prasad, P., Brodersen, P.M., Chen, Y., DaCosta, R., et al. (2014). A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano 8, 9925–9940.

    Article  CAS  PubMed  Google Scholar 

  • Lin, B.L., Zhang, J.Z., Lu, L.J., Mao, J.J., Cao, M.H., Mao, X.H., Zhang, F., Duan, X.H., Zheng, C.S., Zhang, L.M., et al. (2017). Superparamagnetic iron oxide nanoparticles-complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials 7, 107.

    Article  PubMed Central  Google Scholar 

  • Lourenco, S., Teixeira, V.H., Kalber, T., Jose, R.J., Floto, R.A., and Janes, S.M. (2015). Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J Immunol 194, 3463–3474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucius, R., and Sievers, J. (1996). Postnatal retinal ganglion cells in vitro: protection against reactive oxygen species (ROS)-induced axonal degeneration by cocultured astrocytes. Brain Res 743, 56–62.

    Article  CAS  PubMed  Google Scholar 

  • Quan, L., Wu, J., Lane, L.A., Wang, J., Lu, Q., Gu, Z., and Wang, Y. (2016). Enhanced detection specificity and sensitivity of Alzheimer’s disease using amyloid-β-targeted quantum dots. Bioconjugate Chem 27, 809–814.

    Article  CAS  Google Scholar 

  • Salatin, S., Maleki Dizaj, S., and Yari Khosroushahi, A. (2015). Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 39, 881–890.

    Article  CAS  PubMed  Google Scholar 

  • Sandhir, R., Yadav, A., Sunkaria, A., and Singhal, N. (2015). Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. NeuroChem Int 89, 209–226.

    Article  CAS  PubMed  Google Scholar 

  • Shi, P., Li, M., Ren, J., and Qu, X. (2013). Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer’s disease. Adv Funct Mater 23, 5412–5419.

    Article  CAS  Google Scholar 

  • Singh, N., Savanur, M.A., Srivastava, S., D’Silva, P., and Mugesh, G. (2017). A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew Chem Int Ed 56, 14267–14271.

    Article  CAS  Google Scholar 

  • Song, Q., Huang, M., Yao, L., Wang, X., Gu, X., Chen, J., Chen, J., Huang, J., Hu, Q., Kang, T., et al. (2014). Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 8, 2345–2359.

    Article  CAS  PubMed  Google Scholar 

  • Soni, S., Ruhela, R.K., and Medhi, B. (2016). Nanomedicine in central nervous system (CNS) disorders: a present and future prospective. Adv Pharm Bull 6, 319–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streich, C., Akkari, L., Decker, C., Bormann, J., Rehbock, C., Müller-Schiffmann, A., Niemeyer, F.C., Nagel-Steger, L., Willbold, D., Sacca, B., et al. (2016). Characterizing the effect of multivalent conjugates composed of Aβ-Specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation. ACS Nano 10, 7582–7597.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Zhang, H., Ye, H., and Zheng, Y. (2017). Receptor-mediated endocytosis of nanoparticles: roles of shapes, orientations, and rotations of nanoparticles. J Phys Chem B 122, 171–180.

    Article  PubMed  Google Scholar 

  • Tiwari, S.K., Agarwal, S., Seth, B., Yadav, A., Nair, S., Bhatnagar, P., Karmakar, M., Kumari, M., Chauhan, L.K.S., Patel, D.K., et al. (2014). Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease modelvia canonical Wnt/β-catenin pathway. ACS Nano 8, 76–103.

    Article  CAS  PubMed  Google Scholar 

  • Urries, I., Muñoz, C., Gomez, L., Marquina, C., Sebastian, V., Arruebo, M., and Santamaria, J. (2014). Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications. Nanoscale 6, 9230–9240.

    Article  CAS  PubMed  Google Scholar 

  • Varela, J.A., Dupuis, J.P., Etchepare, L., Espana, A., Cognet, L., and Groc, L. (2016). Targeting neurotransmitter receptors with nanoparticles in vivo allows single-molecule tracking in acute brain slices. Nat Commun 7, 10947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernekar, A.A., Sinha, D., Srivastava, S., Paramasivam, P.U., D’Silva, P., and Mugesh, G. (2014). An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 5, 5301.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.R., Xue, X., Hu, X.M., Wei, M.Y., Zhang, C.Q., Ge, G.L., and Liang, X.J. (2014). Structure-dependent mitochondrial dysfunction and hypoxia induced with single-walled carbon nanotubes. Small 10, 2859–2869.

    Article  CAS  PubMed  Google Scholar 

  • Xue, X., Hall, M.D., Zhang, Q., Wang, P.C., Gottesman, M.M., and Liang, X.J. (2013). Nanoscale drug delivery platforms overcome platinumbased resistance in cancer cells due to abnormal membrane protein trafficking. ACS Nano 7, 10452–10464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, X., Wang, L.R., Sato, Y., Jiang, Y., Berg, M., Yang, D.S., Nixon, R.A., and Liang, X.J. (2014). Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett 14, 5110–5117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, X., Yang, J.Y., He, Y., Wang, L.R., Liu, P., Yu, L.S., Bi, G.H., Zhu, M. M., Liu, Y.Y., Xiang, R.W., et al. (2016). Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotech 11, 613–620.

    Article  CAS  Google Scholar 

  • Yang, C.C., Yang, S.Y., Chieh, J.J., Horng, H.E., Hong, C.Y., Yang, H.C., Chen, K.H., Shih, B.Y., Chen, T.F., and Chiu, M.J. (2011). Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci 2, 500–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, T., Xie, W., Sun, J., Yang, L., and Liu, J. (2016). Penetratin peptidefunctionalized gold nanostars: enhanced BBB permeability and NIR photothermal treatment of Alzheimer’s disease using ultralow irradiance. ACS Appl Mater Interfaces 8, 19291–19302.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Zhang, J., Wang, C., Qin, X., Yu, Q., Zhou, Y., and Liu, J. (2014). Interaction between 8-hydroxyquinoline ruthenium(ii ) complexes and basic fibroblast growth factors (bFGF): inhibiting angiogenesis and tumor growth through ERK and AKT signaling pathways. Metallomics 6, 518–531.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, J., Lee, E., Kim, H.Y., Youn, D.H., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., Baek, S., et al. (2017). Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotech 12, 1006–1014.

    Article  CAS  Google Scholar 

  • Zeng, J.Y., Wang, X.S., Zhang, M.K., Li, Z.H., Gong, D., Pan, P., Huang, L., Cheng, S.X., Cheng, H., and Zhang, X.Z. (2017). Universal porphyrinic metal-organic framework coating to various nanostructures for functional integration. ACS Appl Mater Interfaces 9, 43143–43153.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Li, Y., Hu, B., Lu, Z., Zhang, J., and Zhang, X. (2016). Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater 28, 6345–6352.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T.T., Li, W., Meng, G., Wang, P., and Liao, W. (2016). Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 4, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Wang, Y., Sun, X., Wang, W., and Chen, L. (2014). Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 6, 14514–14522.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, Z., Li, X., Wang, L., Yin, M., Wang, L., Chen, N., Fan, C., and Song, H. (2016). Dietary iron oxide nanoparticles delay aging and ameliorate neurodegeneration inDrosophila. Adv Mater 28, 1387–1393.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Zhang, S., Ma, J., Fan, L., Yin, C., Lin, G., and Li, Q. (2015). Double loaded self-decomposable SiO2 nanoparticles for sustained drug release. Nanoscale 7, 16389–16398.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, L., Zhao, Z., Cheng, P., He, Z., Cheng, Z., Peng, J., Wang, H., Wang, C., Yang, Y., and Hu, Z. (2017). Antibody-mimetic peptoid nanosheet for label-free serum-based diagnosis of Alzheimer’s disease. Adv Mater 29, 1700057.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771031 and 81701829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, W., Xue, X. Theranostical application of nanomedicine for treating central nervous system disorders. Sci. China Life Sci. 61, 392–399 (2018). https://doi.org/10.1007/s11427-017-9292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9292-7

Keywords

Navigation