Skip to main content

Advertisement

Log in

Biosynthesis and Chemical Characterization of Silver Nanoparticles Using Satureja Rechingeri Jamzad and Their Apoptotic Effects on AGS Gastric Cancer Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Since green synthesis of silver nanoparticles (AgNPs) is a simple, safe, cost-effective and eco-friendly method, AgNPs appear to be promising anti-cancer agents in the medical field. In this study, the biosynthesis of AgNPs was performed using aqueous extract of Satureja rechingeri Jamzad. Their anti-cancer activity was evaluated on the AGS gastric cancer cell line. The characteristics of the AgNPs were evaluated and approved by transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR) and Dynamic light scattering (DLS). The cytotoxic effect of AgNPs on the AGS cell line was evaluated by MTT assay for 24 h. Flow cytometry technique was performed to evaluate apoptosis using AnnexinV-FITC kit as well as cell cycle analysis. The expression of pro-apoptotic and anti-apoptotic genes was evaluated using Real-Time PCR. The average size of AgNPs was calculated at 62 ± 1 nm. The biosynthesized nanoparticles inhibited AGS cell growth in a time- and dose-dependent manner. Flow cytometry results confirmed apoptotic cell death. Also biosynthesized AgNPs caused up-regulation of pro-apoptotic genes; caspase-3, caspase-9 and Bax and down-regulation of Bcl2 gene and inhibited the expression of cyclin D1 and cyclin E genes. The cell cycle analysis revealed the cancer cells arrest in the G0/G1 phase. It appears that AgNPs synthesized by Satureja rechingeri Jamzad have a high potential for use as an anti-cancer drug for the treatment of gastric cancer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Nazir, et al. (2014). Nanomedicine. https://doi.org/10.1016/j.nano.2013.07.001.

    Article  PubMed  Google Scholar 

  2. A. Jemal, et al. (2011). CA Cancer J. Clin. https://doi.org/10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  3. T. Sano, et al. (2004). J. Clin. Oncol.. https://doi.org/10.1200/JCO.2004.10.184.

    Article  PubMed  Google Scholar 

  4. B. G. Katzung Basic and Clinical Pharmacology (McGraw-Hill Education, New York, 2017).

    Google Scholar 

  5. M. S. Szymanski and R. A. Porter (2013). J. Immunol. Methods. https://doi.org/10.1016/j.jim.2012.11.003.

    Article  PubMed  Google Scholar 

  6. Y. He, et al. (2017). Environ. Toxicol. Pharmacol. https://doi.org/10.1016/j.etap.2017.08.035.

    Article  PubMed  Google Scholar 

  7. M. A. Albrecht, C. W. Evans, and C. L. Raston (2006). Green Chem. https://doi.org/10.1039/b517131h.

    Article  Google Scholar 

  8. J. Osuwa and P. Anusionwu (2011). Asian J. Inf. Technol 2011, (10), 96–100.

    Google Scholar 

  9. M. I. Sriram, et al. (2012). Nanosci. Methods. https://doi.org/10.1080/17458080.2010.547878.

    Article  Google Scholar 

  10. B. Zhu, et al. (2016). Nanoscale Res. Lett. https://doi.org/10.1186/s11671-016-1419-4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. A. Malik, P. O’Brien, and N. Revaprasadu (2002). Chem. Mater. https://doi.org/10.1021/cm011154w.

    Article  Google Scholar 

  12. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomedicine. https://doi.org/10.1016/j.nano.2009.07.002.

    Article  PubMed  Google Scholar 

  13. J. Singh, et al. (2018). J. Nanobiotechnol. https://doi.org/10.1186/s12951-018-0408-4.

    Article  Google Scholar 

  14. V. N. Kalpana and V. Devi Rajeswari (2018). Bioinorg. Chem. Appl. https://doi.org/10.1155/2018/3569758.

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Gour and N. K. Jain (2019). Artif. Cells. Nanomed. Biotechnol. https://doi.org/10.1080/21691401.2019.1577878.

    Article  PubMed  Google Scholar 

  16. S. E. Fard, F. Tafvizi, and M. B. Torbati (2018). IET Nanobiotechnol. https://doi.org/10.1049/iet-nbt.2018.5069.

    Article  PubMed  Google Scholar 

  17. M. A. Rashmezad, et al. (2015). Tehran Univ. Med. J. 72, (12), 799–807.

    Google Scholar 

  18. E. Shirmohammadi, et al. (2014). Int. J. Infect. https://doi.org/10.17795/iji-21944.

    Article  Google Scholar 

  19. S. Salehi, et al. (2016). Int. J. Nanomed. https://doi.org/10.2147/IJN.S99882.

    Article  Google Scholar 

  20. B. Mousavi, F. Tafvizi, and S. Zaker Bostanabad (2018). Artif. Cells. Nanomed. Biotechnol. https://doi.org/10.1080/21691401.2018.1430697.

    Article  PubMed  Google Scholar 

  21. D. E. Lincoln and J. H. Langenheim (1976). Biochem. Syst. Ecol. https://doi.org/10.1016/0305-1978(76)90046-6.

    Article  Google Scholar 

  22. V. Hajhashemi, et al. (2000). J. Ethnopharmacol. https://doi.org/10.1016/s0378-8741(99)00209-3.

    Article  PubMed  Google Scholar 

  23. V. Hajhashemi, B. Zolfaghari, and A. Yousefi (2012). Med. Princ. Pract. https://doi.org/10.1159/000333555.

    Article  PubMed  Google Scholar 

  24. M. Milos, et al. (2001). Flavour Fragr J. https://doi.org/10.1002/ffj.965.

    Article  Google Scholar 

  25. J. Góra, A. Lis, and A. Lewandowski (1996). J. Essent Oil Res. https://doi.org/10.1080/10412905.1996.9700656.

    Article  Google Scholar 

  26. Teimori, M., Essential oil analysis and antibacterial activity of Satureja Bachtiarica Bunge. In Ardebile Province. (2009)

  27. Z. F. Baher, et al. (2002). Flavour Fragr. J. https://doi.org/10.1002/ffj.1097.

    Article  Google Scholar 

  28. I. Rasaee, M. Ghannadnia, and S. Baghshahi (2018). Microporous Mesoporous Mater 264, 240–247.

    Article  CAS  Google Scholar 

  29. P. Afshar and S. Sedaghat (2016). Curr. Nanosci 12, (1), 90–93.

    Article  CAS  Google Scholar 

  30. S. Aslany, F. Tafvizi, and V. Naseh (2020). Mater. Today Commun 24, 101011.

    Article  CAS  Google Scholar 

  31. C. Y. Loo, et al. (2016). J. Agric. Food Chem. https://doi.org/10.1021/acs.jafc.5b04559.

    Article  PubMed  Google Scholar 

  32. Y. He, et al. (2016). Int. J. Nanomed. https://doi.org/10.2147/IJN.S103695.

    Article  Google Scholar 

  33. P. Jegadeeswaran, R. Shivaraj, and R. Venckatesh (2012). Digest J. Nanomater. Biostruct 7, (3), 991–998.

    Google Scholar 

  34. K. Kalishwaralal, et al. (2010). Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2010.02.007.

    Article  PubMed  Google Scholar 

  35. S. Roy and T. K. Das (2015). Int. J. Plant Biol. Res 7, 991–998.

    Google Scholar 

  36. K. S. Siddiqi, A. Husen, and R. A. K. Rao (2018). J. Nanobiotechnol. https://doi.org/10.1186/s12951-018-0334-5.

    Article  Google Scholar 

  37. S. Pirtarighat, M. Ghannadnia, and S. Baghshahi (2018). J. Nanostruct. Chem. https://doi.org/10.1007/s40097-018-0291-4.

    Article  Google Scholar 

  38. U. Kreibig and M. Vollmer Optical Properties of Metal Clusters (Springer, Berlin, 1995).

    Book  Google Scholar 

  39. A. G. Al-Nuairi, et al. (2020). Biol. Trace Elem. Res.. https://doi.org/10.1007/s12011-019-01791-7.

    Article  PubMed  Google Scholar 

  40. K. Kokila, N. Elavarasan, and V. Sujatha (2017). Smart Sci 5, (3), 140–149.

    Article  Google Scholar 

  41. S. Soman and J. Ray (2016). J. Photochem. Photobiol. B: Biol 163, 391–402.

    Article  CAS  Google Scholar 

  42. A. Panáček, et al. (2006). J. Phys. Chem. B 110, (33), 16248–16253.

    Article  CAS  Google Scholar 

  43. H. Erjaee, H. Rajaian, and S. Nazifi (2017). Adv. Nat. Sci 8, 025004.

    Google Scholar 

  44. J. Baharara, et al. (2015). Molecules 20, (2), 2693–2706.

    Article  CAS  Google Scholar 

  45. R. Mukhopadhyay, J. Kazi, and M. C. Debnath (2018). Biomed. Pharmacother. https://doi.org/10.1016/j.biopha.2017.10.167.

    Article  PubMed  Google Scholar 

  46. L. Pecorino Molecular biology of cancer: mechanisms, targets, and therapeutics (Oxford University Press, Oxford, 2012).

    Google Scholar 

  47. S. Firoozi, M. Jamzad, and M. Yari (2016). J. Nanostruct. Chem 6, (4), 357–364.

    Article  CAS  Google Scholar 

  48. F. Narchin, et al. (2018). Adv. Pharm. Bull.. https://doi.org/10.15171/apb.2018.028.

    Article  PubMed  PubMed Central  Google Scholar 

  49. X.-J. Huang, et al. (2006). Sensors 6, 756–782.

    Article  CAS  Google Scholar 

  50. Ranjbar, A., et al. (2014), Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat. Nanomed. J

  51. D. Raghunandan, et al. (2011). Cancer Nanotechnol. https://doi.org/10.1007/s12645-011-0014-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. P. V. Asharani, M. P. Hande, and S. Valiyaveettil (2009). BMC Cell Biol. https://doi.org/10.1186/1471-2121-10-65.

    Article  PubMed  PubMed Central  Google Scholar 

  53. C. Greulich, et al. (2011). Acta Biomater. https://doi.org/10.1016/j.actbio.2010.08.003.

    Article  PubMed  Google Scholar 

  54. S. Kim, et al. (2009). Toxicol In Vitro. https://doi.org/10.1016/j.tiv.2009.06.001.

    Article  PubMed  Google Scholar 

  55. H. Rosas-Hernandez, et al. (2009). Toxicol. Lett. https://doi.org/10.1016/j.toxlet.2009.09.014.

    Article  PubMed  Google Scholar 

  56. Y. H. Hsin, et al. (2008). Toxicol. Lett. https://doi.org/10.1016/j.toxlet.2008.04.015.

    Article  PubMed  Google Scholar 

  57. P. Sanpui, A. Chattopadhyay, and S. S. Ghosh (2011). ACS Appl. Mater. Interfaces. https://doi.org/10.1021/am100840c.

    Article  PubMed  Google Scholar 

  58. M. Ahamed, et al. (2008). Toxicol. Appl. Pharmacol. https://doi.org/10.1016/j.taap.2008.09.015.

    Article  PubMed  Google Scholar 

  59. R. Sukirtha, et al. (2012). Process Biochem. https://doi.org/10.1016/j.procbio.2011.11.003.

    Article  Google Scholar 

  60. D. Philip (2010). Physica E Low-dimensional Syst. Nanostruct. https://doi.org/10.1016/j.physe.2009.11.081.

    Article  Google Scholar 

  61. M. I. Sriram, et al. (2010). Int. J. Nanomed. https://doi.org/10.2147/IJN.S11727.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of PIAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzaneh Tafvizi.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiripoure Ganjineh Ketab, R., Tafvizi, F. & Khodarahmi, P. Biosynthesis and Chemical Characterization of Silver Nanoparticles Using Satureja Rechingeri Jamzad and Their Apoptotic Effects on AGS Gastric Cancer Cells. J Clust Sci 32, 1389–1399 (2021). https://doi.org/10.1007/s10876-020-01903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01903-7

Keywords

Navigation