Skip to main content
Log in

Assembly of Organic–Inorganic Hybrids From 1D to 2D Framework Based on Triethanolamine-Functionalized Molybdovanadate with Electrochemical Sensing of Ascorbic Acid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new organic–inorganic hybrids, (TeaH)2[Cu(Tea)(H2O)2]2[Cu(Tea)]2[HN(CH2CH2O)3VMo6O22]2·12H2O (1), (NH4)5[Na(H2O)2][Cu(Tea)]2[HN(CH2CH2O)3VMo6O22]2·13H2O (2) [Tea = triethanolamine], has been synthesized and structurally characterized. A hybrid subunit [HN(CH2CH2O)3VMo6O22]5− was synthesized in aqueous solution, in which Tea ligand is linked covalently with the [VMo6O25]9− cluster. In compound 1, the {[Cu(Tea)]2[HN(CH2CH2O)3VMo6O22]2}6− anions, [Cu(Tea)(H2O)2] units and protonated [TeaH]+ cations are joined together via hydrogen bond interactions to form a two-dimensional (2D) layered framework. Compound 2 adopts a 1D chain structure, in which the adjacent {[Cu(Tea)]2[HN(CH2CH2O)3VMo6O22]2}6− anions are connected alternately by [Na(H2O)2]+ units. Compounds 1 and 2 modified electrodes exhibit good electrochemical sensing performance for the detection of ascorbic acid.

Graphic Abstract

Two new organic-inorganic hybrids from 1D to 2D framework based on triethanolamine functionalized molybdovanadate have been synthesized and structurally characterized. The functional application of 1 and 2 in electrochemical sensing of AA are investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. S. Cherevan, S. P. Nandan, I. Roger, R. J. Liu, C. Streb, D. Eder (2020), Adv. Sci. 7, 1903511.

    Article  CAS  Google Scholar 

  2. A. Bijelic, M. Aureliano, A. Rompel (2019), Angew. Chem. Int. Ed. 58, 2980–2999.

    Article  CAS  Google Scholar 

  3. L. Chen, W. L.Chen , X. L. Wang, Y. G. Li , Z. M. Su , E. B. Wang (2019). Chem Soc Rev. 48, 260–284.

    CAS  Google Scholar 

  4. J. C. Liu, Q. Han, L. J. Chen, J. W. Zhao, C. Streb, Y. F. Song (2018). Angew. Chem. Int. Ed.. 57, 8416–8420.

    Article  CAS  Google Scholar 

  5. J. W. Zhang, Y. C. Huang, G. Li, Y. G. Wei (2019). Coord Chem Rev. 378, 395–414.

    Article  CAS  Google Scholar 

  6. H. L. Zhang, W. Liu, A. Li, D. Zhang, X. Y. Li, F. W. Zhai, L. H. Chen, L. Chen, Y. L. Wang, S. A. Wang (2019). Angew. Chem. Int. Ed. 58, 16110–16114.

    Article  CAS  Google Scholar 

  7. A. V. Anyushin, A. Kondinski, T. N. Parac-Vogt (2020). Chem. Soc. Rev. 49, 382–432.

    Article  CAS  Google Scholar 

  8. Z. H. Peng (2004), Angew. Chem. Int. Ed. 43, 930–935.

    Article  CAS  Google Scholar 

  9. Y. T. Zhu, Y. C. Huang, Q. Li, D. J. Zang, J. Gu, Y. J. Tang, Y. G. Wei (2020). Inorg. Chem. 59, 2575––2583.

    Article  CAS  Google Scholar 

  10. B. Huang, Z. C. Xiao, B. L. Wu, X. K. Hu, X. L. Hu, P. F. Wu, Y. G. Wei (2017). Inorg. Chem. Front. 4, 165–170.

    Article  CAS  Google Scholar 

  11. C. Yvon, A. Macdonell, S. Buchwald, A. J. Surman, N. Follet, J. Alex, D. L. Long, L. Cronin (2013). Chem. Sci. 4, 3810–3817.

    Article  CAS  Google Scholar 

  12. Y. Wang, B. Li, H. Qian, L. Wu (2016). Inorg. Chem. 55, 4271–4277.

    Article  CAS  Google Scholar 

  13. A. Blazevic, A. Rompel (2016). Coord. Chem. Rev. 307, 42–64.

    Article  CAS  Google Scholar 

  14. F. Y. Li, L. Xu (2011). Dalton Trans. 40, 4024–4034.

    Article  CAS  Google Scholar 

  15. O. W. Howarth, L. Pettersson, I. Andersson (1991). Dalton Trans. 1799–1812.

    Article  Google Scholar 

  16. T. Rajeshkumar, R. Jose, P. R. Remya, G. Rajaraman (2019). Inorg. Chem. 58, 11927–11940.

    Article  CAS  Google Scholar 

  17. H. N. Miras, D. Stone, D. L. Long, E. J. L. McInnes, P. Kögerler, L. Cronin (2011). Inorg. Chem. 50, 8384–8391.

    Article  CAS  Google Scholar 

  18. Q. Gao, F. Y. Li, Y. C. Wang, L. Xu, J. Bai, Y. Wang (2014). Dalton Trans. 43, 941–944.

    Article  CAS  Google Scholar 

  19. CrysAlisCCD and CrysAlisRED, (Oxford Diffraction Ltd, Abingdon, UK, 2010).

    Google Scholar 

  20. G.M. Sheldrick, SHELXTL, a Software for Empirical Absorption Correction (BrukerAXSInc.: WI.Madison, 2001), Ver. 6.12.

  21. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A. 64, 112–114.

    CAS  Google Scholar 

  22. Q. Gao, F. Y. Li, Z. X. Sun, L. Xu, M. H. Sun (2016), Dalton Trans. 45, 2422–2425.

    Article  CAS  Google Scholar 

  23. S. J. Li, P. P. Ji, S. N. Han, Z. M. Hao, X. N. Chen (2020). Inorg. Chem. Commun.. 111, 107666.

    Article  CAS  Google Scholar 

  24. M. T. Pope, Heteropoly and IsopolyOxometalates (Springer-Verlag, Berlin, 1983).

    Book  Google Scholar 

  25. X. Y Ma, K. Yu, J. Yuan, L. P. Cui, J. H. Lv, W. T. Dai, B. B. Zhou (2020), Inorg. Chem. 59, 5149–5160.

    Article  CAS  Google Scholar 

  26. Y. L. Wang, Y. Y. Ma, Q. Zhao, L. Hou, Z. G. Han (2020), Sens. Actuators B Chem. 305, 127469.

    Article  CAS  Google Scholar 

  27. C. H. Gong, X. H. Zeng, C. H. Zhu, J. H. Shu, P. X. Xiao (2016). RSC Adv. 6, 106248–106259.

    Article  CAS  Google Scholar 

  28. B. Ali, T. McCormac, C. Maccato, D. Barreca, G. Carraro (2020), J Electroanal Chem. 858 113770.

    Article  CAS  Google Scholar 

  29. Q. Gao, D. H. Hu, D .H. Li, M. H. Duan, Y. Wu (2019). Inorg. Chim. Acta. 487, 107–111.

    Article  CAS  Google Scholar 

  30. D. Zhu, W. Zhu, J. J. Xin, L. C. Tan, X. M. Wang, H. J. Pang, H. Y. Ma (2019). New J. Chem. 43, 9420.

    Article  CAS  Google Scholar 

  31. B. Keita, A. Belhouari, L. Nadjo, R. Contant (1995). J. Electroanal. Chem. 381, 243–250.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 81973468 and 81803680), Jilin Province Science and Technology Development Project in China (Grant No. 20170309005YY), "Xinglin Scholars Project" Young Scientist Training Program of Changchun University of Chinese Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Luo, HM., Gao, Q. et al. Assembly of Organic–Inorganic Hybrids From 1D to 2D Framework Based on Triethanolamine-Functionalized Molybdovanadate with Electrochemical Sensing of Ascorbic Acid. J Clust Sci 32, 1381–1387 (2021). https://doi.org/10.1007/s10876-020-01897-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01897-2

Keywords

Navigation