Skip to main content
Log in

Facile Synthesis of Au/Ni(OH)2 Nanocomposites and its Application in Nonenzymatic Glucose Sensing

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A simple and environment-friendly autocatalytic reduction process was developed for synthesis of Au/Ni(OH)2 nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found the nanocomposites are composed of ultrathin Ni(OH)2 nanosheets and gold nanoparticles (AuNPs), and the AuNPs disperse evenly on the Ni(OH)2 nanosheets. The electrochemical and electrocatalytic properties of the Au/Ni(OH)2 modified glassy carbon electrode (Au/Ni(OH)2/GCE) were investigated by electrochemical experiments. Furthermore, through optimizing Au loading of the nanocomposites, the 5%-Au/Ni(OH)2/GCE displays the best electrocatalytic activity towards glucose oxidization in alkaline medium. Under optimal conditions, the 5%-Au/Ni(OH)2/GCE displays a wide linear range of 0.01 to 3.15 mM (R2 = 0.998) to glucose. Besides, the sensor has a low detection limit of 0.10 μM (S/N = 3) and a high sensitivity of 342.1 μA·mM−1·cm−2. It also displays satisfying stability, good reproducibility and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Vaddiraju, I. Tomazos, D. J. Burgess, F. C. Jain and F. Papadimitrakopoulos (2010). Biosens. Bioelectron. 25, 1553–1565.

    Article  PubMed  CAS  Google Scholar 

  2. D. L. Ma, W. H. Wang, Z. F. Mao, C. Yang, X. P. Chen, J. J. Lu, Han QB and C. H. Leung (2016). Anal. Chem. Acta. 913, 41–54.

    Article  CAS  Google Scholar 

  3. P. W. Barone, S. Baik, D. A. Heller and M. S. Strano (2005). Nat. mater. 4, 86–92.

    Article  PubMed  CAS  Google Scholar 

  4. D. Sodzel, V. Khranovskyy, V. Beni , A. P. F. Turner, R. Viter, M. O. Eriksson, P. O. Holtz, J. M. Janot, M. Bechelany, S. Balme, V. Smyntyna, E. Kolesneva, L. Dubovskaya, L. Volotovski, A. Ubelis and R. Yakimova (2015). Microchim. Acta. 182, 1819–1826.

    Article  CAS  Google Scholar 

  5. S. K. Mahadeva and J. Kim (2011). Sens. Actuators B Chem. 157, 177–182.

    Article  CAS  Google Scholar 

  6. J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski andD. J. Birch (2005). Biosens. Bioelectron. 20, 2555–2565.

    Article  PubMed  CAS  Google Scholar 

  7. Y. L. T. Ngo, L. T. Hoa, J. S. Chung and S. H. Hur (2017). J. Alloys Compd. 712, 742–751.

    Article  CAS  Google Scholar 

  8. J. Xie, S. Wang, L. Aryasomayajula and V. K. Varadan (2008). J. Mater. Res. 23, 1457–1465.

    Article  CAS  Google Scholar 

  9. A. Liu, Q. Ren, T. Xu, M. Yuan and W. Tang (2012). Sens. Actuators B Chem. 162, 135–142.

    Article  CAS  Google Scholar 

  10. Y. Sun, H. Yang, X. Yu, H. Meng and X. Xu (2015). RSC Adv. 5, 70387–70394.

    Article  CAS  Google Scholar 

  11. X. L. Chen, H. B. Pan, H. F. Liu and M. Du (2010). Electrochim. Acta. 56, 636–643.

    Article  CAS  Google Scholar 

  12. H. M. Yadav and J. J. Lee (2018). J. Solid State Electr. 23, 503–512.

    Article  CAS  Google Scholar 

  13. L. Pan, T. L. Yu, J. L. Sheng, W. Qing and B. L. Qi (2015). Anal. Chem. Acta. 880, 42–51.

    Article  CAS  Google Scholar 

  14. Q. Xiao, X. X. Wang and S. P. Huang (2017). Mater. Lett. 198, 19–22.

    Article  CAS  Google Scholar 

  15. M. Li, X. J. Bo, Z. C. Mu, Y. F. Zhang and L. P. Guo (2014). Sens. Actuators B Chem. 192, 261–268.

    Article  CAS  Google Scholar 

  16. X. J. Zhang, A. X. Gu, G. F. Wang, Y. Huang, H. Q. Jia and B. Fang (2011). Analyst. 136, 5175–5180.

    Article  PubMed  CAS  Google Scholar 

  17. Y. Ding, Y. X. Liu, Parisi J, L. C. Zhang and Y. Lei (2011). Biosens. Bioelectron. 28, 393–398.

    Article  CAS  Google Scholar 

  18. Y. Ding, Y. Wang, L. Su, H. Zhang and Y. Lei (2010). J. Mater. Chem. 20, 9918–9926.

    Article  CAS  Google Scholar 

  19. F. Bao, F. T. Tan, W. Wang, X. L. Qiao and J. G. Chen (2017). RSC Adv.7, 14283–14289.

    Article  CAS  Google Scholar 

  20. Y. Fu, J. M. Song, Y. Q. Zhu andC. B. Cao (2014). J. Power Sources. 262, 344–348.

    Article  CAS  Google Scholar 

  21. T. B. Devi and M. Ahmaruzzaman (2017).Chem. Eng. J. 317, 726–741.

    Article  CAS  Google Scholar 

  22. R. G. Bai, K. Muthoosamy, M. Zhou, M. Ashokkumar, N. M. Huang and S. Manickam (2017). Biosens. Bioelectron. 87, 622–629.

    Article  CAS  Google Scholar 

  23. B. P. Payne, M. C. Biesinger and N. S. McIntyre (2009). J. Electron. Spectrosc.. 175, 55–65.

    Article  CAS  Google Scholar 

  24. B. Cheng, J. M. Russell, W. Shi, L. Zhang and E. T. Samulski (2004). J. Am. Chem. Soc. 126, 5972–5973.

    Article  PubMed  CAS  Google Scholar 

  25. S. Q. Liu, H. R. Wen, G. Ying, Y. W. Zhu, X. Z. Fu, R. Sun and C. P. Wong (2018). Nano Energy. 44, 7–14.

    Article  CAS  Google Scholar 

  26. L. L. Tian, K. D. Xia, S. P. Wu, Y. H. Cai, H. D. Liu, X. L. Jing, T. Yang, D. D. Chen, X. Bai, M. Zhou and L. Li (2019). Electrochim. Acta. 307, 310–317.

    Article  CAS  Google Scholar 

  27. B. R. Wang, Y. Cao, Y. Chen, R. Z. Wang, X. H. Wang, X. Y. Lai, C. H. Xiao, J. C. Tu and S. J. Ding (2018). Inorg. Chem. Front. 5, 172–182.

    Article  CAS  Google Scholar 

  28. B. B. Zhan, C. B. Liu, H. P. Chen, H. X. Shi, L. H. Wang, P. Chen, W. Huang and X. C. Dong (2014). Nanoscale. 6, 7424–7429.

    Article  PubMed  CAS  Google Scholar 

  29. A. Placido, C. Pereira, A. Guedes, M. F. Barroso, R. Miranda-Castro, N. de-Los-Santos-Alvarez and C. Delerue-Matos (2018). Biosens. Bioelectron. 110, 147–154.

    Article  CAS  Google Scholar 

  30. Y. Z. Zhang, Y. Y. Song, J. C. Zhao, S. X. Li and Y. C. Li (2020). J. Alloys Compd. 822, 153322.

    Article  CAS  Google Scholar 

  31. S. Gupta, S. B. Carrizosa, B. McDonald, J. Jasinski and N. Dimakis (2017). J. Mater. Res. 32, 301–322.

    Article  CAS  Google Scholar 

  32. J. Chen, H. Yin, J. Zhou, J. Gong, L. Wang, Y. Zheng and Q. Nie (2019). J. Alloys Compd.797, 922–930.

    Article  CAS  Google Scholar 

  33. Y. Zhang, F. G. Xu, Y. J. Sun, Y. Shi, Z. W. Wen and Z. Li (2011). J. Mater. Chem. 21, 16949–16954.

    Article  CAS  Google Scholar 

  34. R. A. Soomro, Z. H. Ibupoto, Sirajuddin, M. I. Abro and M. Willander (2015). J. Solid State Electr. 19, 913–922.

    Article  CAS  Google Scholar 

  35. A. Safavi, N. Maleki and E. Farjami (2009). Biosens. Bioelectron. 24, 1655–1660.

    Article  PubMed  CAS  Google Scholar 

  36. R. L. Doyle and M. E. G. Lyons (2014). J. Solid State Electr. 18, 3271–3286.

    Article  CAS  Google Scholar 

  37. Y. C. Li, Y. M. Zhong, Y. Y. Zhang, W. Weng and S. X. Li (2015). Sens. Actuators B Chem. 206, 735–743.

    Article  CAS  Google Scholar 

  38. A. A. Ensafi, N. Ahmadi and B. Rezaei (2017). Sens. Actuators B Chem. 239, 807–815.

    Article  CAS  Google Scholar 

  39. Y. Su, H. Guo, Z. S. Wang, Y.M. Long, W. F. Li and Y. F. Tu (2018). Sens. Actuators B Chem. 255, 2510–2519.

    Article  CAS  Google Scholar 

  40. Y. Fan, Z. J. Yang, X. H. Cao, P. F. Liu, S. Chen and Z. Cao (2014). J. Electrochem. Soc. 161, B201–B206.

    Article  CAS  Google Scholar 

  41. P. Lu, Q. B. Liu, Y. Z. Xiong,Q. Wang, Y. T. Lei, S. J. Lu, L. W. Lu and L. Yao (2015). Electrochim. Acta. 168, 148–156.

    Article  CAS  Google Scholar 

  42. L. Wang, X. P. Lu, Y. J. Ye, L. L. Sun and Y. H. Song (2013).Electrochim. Acta. 114, 484–493.

    Article  CAS  Google Scholar 

  43. M. Shamsipur,M. Najafi and M. R. Hosseini (2010). Bioelectrochemistry. 77, 120–124.

    Article  PubMed  CAS  Google Scholar 

  44. Y. Ni, J. Xu, Q. Liang and S. J. Shao (2017). Sens. Actuators B Chem. 250, 491–498.

    Article  CAS  Google Scholar 

  45. J. W. Huang, Y. Q. He, J. Jin, Y. R. Li, Z. P. Dong and R.Li (2014). Electrochim. Acta. 136, 41–46.

    Article  CAS  Google Scholar 

  46. S. Hrapovic and J. H. T. Luong (2003). Anal. Chem. 75, 3308–3315.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21905125) and the Innovation Base Foundation for Graduate Students Education of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Song, Y. & Li, Y. Facile Synthesis of Au/Ni(OH)2 Nanocomposites and its Application in Nonenzymatic Glucose Sensing. J Clust Sci 32, 1371–1379 (2021). https://doi.org/10.1007/s10876-020-01896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01896-3

Keywords

Navigation