Skip to main content
Log in

Metal-Doped Barium Sulphate Nanoparticles Decorated with Gelatin as Antibacterial Agents

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoparticles are gaining a new impetus in the field of medicine because of their potential to overcome core problems of drug efficacy. Amongst inorganic nanoparticles, barium sulphate in nano form is achieving wide attention due to its valuable applications. Despite the several advantages of barium sulphate nanoparticles, there is a major difficulty in their preparation and stability in the medium, as they belong to poorly soluble particles group. Hence, bearing in mind the synthesis barriers associated with these nanoparticles, a modified methodology has been designed for the synthesis of nanoparticles by capping them with gelatin. In addition, to enhance their physico-chemical properties and antimicrobial efficacy, BaSO4 nanoparticles were doped with four different metals. The synthesized nanoparticles were characterized through UV–Visible spectra, X-Ray Diffraction patterns, Dynamic Light Scattering, Field Emission Scanning Electron Microscopy analysis. Their antimicrobial potential and cytotoxicity through mitogenic response was also evaluated. These doped nanoparticles have shown enhanced properties in their structure (size reduction from micro to nano, dispersibility in the medium, non-aggregation etc.) and antimicrobial efficiency than its bulk counterparts. To the best of our knowledge, this is the first report on antimicrobial potential of synthesized metal-doped barium sulphate nanoparticles stabilized with gelatin.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data

All available data has been presented in the paper.

Abbreviations

BaSO4 :

Barium Sulphate

CFU/ml:

Colony Forming Units/milliliter

Co:

Cobalt

Cu:

Copper

DLS:

Dynamic Light Scattering

DMSO:

Dimethyl Sulfoxide

FE-SEM:

Field Emission Scanning Electron Microscopy

Mn:

Manganese

MTCC:

Microbial Type Culture Collection and Gene Bank

MTT:

(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)

ppm:

Parts Per Million

XRD:

X-Ray Diffraction

Zn:

Zinc

References

  1. D. Botequim, J. Maia, M.M.F, Lino, L.M.F. Lopes, P.N. Simões, L.M. Ilharco, and L. Ferreira (2012). Langmuir 28(20), 7646–7656. https://doi.org/10.1021/la300948n.

  2. C. Jingjing, Z. Yu, L. Yong, T. Shuang, Z. Chunxiong, L. Chenhui, Y. Zhai, A. Yingli, J. B. Henk, S. Linqi, and L. Yang (2019). ACS Macro Lett 8, 651–657. https://doi.org/10.1021/acsmacrolett.9b00142.

    Article  CAS  Google Scholar 

  3. P. D. Sruthi, C. S. Sahithya, C. Justin, C. S. Priya, K. S. Bhavya, P. Senthilkumar, and A. V. Samrot (2019). J. Clust. Sci 30, 11–24. https://doi.org/10.1007/s10876-018-1454-7.

    Article  CAS  Google Scholar 

  4. B. Pannerselvam, T. S. Alagumuthu, S. K. Cinnaiyan, N. A. Al-Dhabi, K. Ponmurugan, M. Saravanan, S. V. Kanth, and K. P. Thangavelu (2020). J. Clust. Sci. https://doi.org/10.1007/s10876-020-01759-x.

    Article  Google Scholar 

  5. H. J. Kim, H. W. Park, and S. W. Seo (2017). Nano Convergence 4, (33), 1–9. https://doi.org/10.1186/s40580-017-0126-x.

    Article  CAS  Google Scholar 

  6. S. Chandna, N.S. Thakur, Y.N. Reddy, R. Kaur, and J. Bhaumik (2019). ACS Biomater. Sci. Eng 5(7), 3212–3227. https://doi.org/10.1021/acsbiomaterials.9b00233.

  7. H. Meng-Hsuan, M. Qingxin, R. S. Zachary, F. Chen, and Z. Miqin (2015). ACS Macro Lett 4, 403–407. https://doi.org/10.1021/acsmacrolett.5b00091.

    Article  CAS  Google Scholar 

  8. T. Angelo, A. D. F. Yuri, A. Elvio, C. Lucia, D. Giacomo, G. Pietro, N. Vittorio, P. Piersandro, P. Luca, and P. Maddalena (2012). Langmuir 28, (21), 8140–8148. https://doi.org/10.1021/la3003838.

    Article  CAS  Google Scholar 

  9. A. Viswadevarayalu, P.V. Ramana, G.S. Kumar, L.R. sylvia, J. Sumalatha, and S.A. Reddy (2015). J. Clust. Sci 27(1), 155-168. https://doi.org/10.1007/s10876-015-0917-3.

  10. K. Lavanya, D. Kalaimurugan, M. S. Shivakumar, and S. Venkatesan (2020). J. Clust. Sci 31, 265–275. https://doi.org/10.1007/s10876-019-01644-2.

    Article  CAS  Google Scholar 

  11. R. Rekha, S. Mahboob, A. K. Ramya, S. Kerthekeyan, M. Govindarajan, K. A. Al-Ghanim, F. Al-Misned, Z. Ahmed, and B. Vaseeharan (2020). J. Clust. Sci. https://doi.org/10.1007/s10876-020-01849-w.

    Article  Google Scholar 

  12. V. Ramaswamy, G. Suresh, V. Meenakshisundaram, and V. Ponnusamy (2011). J. Ceramic Process Res 12, 184–195. https://doi.org/10.1016/j.apradiso.2010.07.020.

    Article  CAS  Google Scholar 

  13. B. A. Sifontes, E. Canizales, J. Toro-Mendoza, E. Avila, P. Hernandez, A. B. Delgado, B. G. Gutierrez, Y. Diaz, and E. Cruz-Barrios (2015). J. Nanomater 2015, 1–9.

    Article  Google Scholar 

  14. J. S. Hanor (2000). Rev. Mineral. Geochem 40, 193–275. https://doi.org/10.2138/rmg.2000.40.4.

    Article  CAS  Google Scholar 

  15. F. Ibarra, C. Meyer, S. Haubold, and T. Heidelberg, US Patent No. 7288239, 30 October 2007.

  16. S. Singh, A. Vij, S. P. Lochab, R. Kumar, and N. Singh (2010). Materials Research Bulletin 45, (5), 523–526. https://doi.org/10.1016/j.materresbull.2010.02.007.

    Article  CAS  Google Scholar 

  17. A. Maynard and E. D. Kuempel (2007). J. Nanopart. Res 9, 1–3. https://doi.org/10.1007/s11051-006-9164-8.

    Article  Google Scholar 

  18. G. Oberdorster (2002). Inhalation Toxicol 14, 29–56. https://doi.org/10.1080/089583701753338631.

    Article  CAS  Google Scholar 

  19. C. L. Tran, D. Buchanan, R. T. Cullen, A. Searl, A. D. Jones, and K. Donaldson (2008). Inhalation Toxicol 12, 1113–1126. https://doi.org/10.1080/08958370050166796.

    Article  Google Scholar 

  20. Y. Shen, C. Li, X. Zhu, A. Xie, L. Qiu, and J. Zhu (2007). J. Chem. Sci 119, (4), 319–324.

    Article  CAS  Google Scholar 

  21. E. G. Aninwene, D. Stout, Z. Yang, and J. T. Webster (2013). Int. J. Nanomed 8, 1197–1205.

    Google Scholar 

  22. S. Sivakumar, P. Soundhirarajan, A. Venkatesan, and P. C. Khatiwada (2015). Spectrochim. Acta, Part A 151, 895–907. https://doi.org/10.1016/j.saa.2015.07.048.

    Article  CAS  Google Scholar 

  23. N. Padmavathy and R. Vijayaraghavan (2008). Sci. Technol. Adv. Mater. 9, 1–7. https://doi.org/10.1088/1468-6996/9/3/035004.

    Article  CAS  Google Scholar 

  24. T. Mosmann (1983). J. Immunol Methods. 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  PubMed  CAS  Google Scholar 

  25. D. Zhang, and H. Yang (2013). Physica B 415, 44–48.

  26. S. Sivakumar, P. Soundhirarajan, A. Venkatesan, and P. C. Khatiwad (2015). Spectrochim. Acta, Part A 137, 137–147. https://doi.org/10.1016/j.saa.2014.08.080.

    Article  CAS  Google Scholar 

  27. N. Sharma, S. Jandaik, S. Kumar, M. Chitkara, and I. S. Sandhu (2016). J. Exp. Nanosci 11, 54–71. https://doi.org/10.1080/17458080.2015.1025302.

    Article  CAS  Google Scholar 

  28. A. K. Chatterjee, R. Chakraborty, and T. Basu (2014). Nanotechnol. 25, 11360–11370. https://doi.org/10.1088/0957-4484/25/13/135101.

    Article  CAS  Google Scholar 

  29. M. Sivera, L. Kvitek, J. Soukupova, A. Panacek, R. Prucek, R. Vecerova, and R. Zboril (2014). PLoS ONE 9, (8), e103675. https://doi.org/10.1371/journal.pone.0103675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Biotechnology, Punjabi University, Patiala for providing the basic necessary facility to conduct the experimental work. Authors are also grateful to Sophisticated Analytical Instrumentation Facility (SAIF) Centre at Punjab University, Chandigarh for providing the facilities for characterization of nanoparticles.

Funding

The authors declare that they had received no funding from any agency for the execution of the present research work.

Author information

Authors and Affiliations

Authors

Contributions

BSS has conceived and conceptualized the study, and designed all experiments. BSS, MK and MS have performed the experiments. BSS and MK have drafted and refined the manuscript with equal contribution.

Corresponding author

Correspondence to Balwinder S. Sooch.

Ethics declarations

Competing interests

The authors declare that they have no competing interest or conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sooch, B.S., Mann, M.K. & Sharma, M. Metal-Doped Barium Sulphate Nanoparticles Decorated with Gelatin as Antibacterial Agents. J Clust Sci 32, 1141–1154 (2021). https://doi.org/10.1007/s10876-020-01878-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01878-5

Keywords

Navigation