Skip to main content

Advertisement

Log in

Gelatin Stabilized Silver Nanoparticle Provides Higher Antimicrobial Efficiency as Against Chemically Synthesized Silver Nanoparticle

  • original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) have become widely used nanomaterial due to its potential application in biomedical and pharmaceutical areas, as due to their antibacterial property. Even though it has antibacterial activity it also shows toxicity at higher concentration in humans and other organisms. Taking into consideration the above mentioned concern, we have performed a comparative antibacterial and hemolytic efficacy of gelatin stabilized/coated AgNPs (G-AgNPs) versus uncoated AgNPs. For G-AgNPs UV–Vis absorption shows λ max at 420–425 nm, FT-IR confirms that presence of amide group indicates AgNPs is stabilized/coated inside the gelatin and TEM analysis of G-AgNPs shows average particle size of 4.3 ± 1.3 nm that are mono dispersed in nature. AgNPs and G-AgNPs were demonstrated for their antibacterial activity using well diffusion method, Minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC) and antibiofilm assay against 4 clinical pathogens. In addition, we have performed a hemolytic assay on human RBC cells. The results show that biocompatible polymer (Gelatin) coated silver nanoparticle (G-AgNPs) exhibits excellent antibacterial activity as well as a minimal hemolytic effect than uncoated AgNPs. Based on this study, we suggest that G-AgNPs can be used as a promising nanomaterial in pharmaceutical and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Mohan, O. S. Oluwafemi, S. C. George, V. P. Jayachandran, F. B. Lewu, S. P. Songca, N. Kalarikkal, and S. Thomas (2014). Carbohydr. Polym106, 469.

    Article  CAS  Google Scholar 

  2. M. Guzman, J. Dille and S. Godet (2012). Nanomedicine: NBM.8, 37.

  3. C. Ashokraja, M. Sakar, and S. Balakumar (2019). Mater. Res. Express.4, 105406.

    Article  Google Scholar 

  4. S. Kittler, C. Greulich, J. Diendorf, M. Koller, and M. Epple (2010). Chem. Mater.22, 4548.

    Article  CAS  Google Scholar 

  5. I. Khan, K. Saeed, and I. Khan (2017). Arab. J. Chem.. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  Google Scholar 

  6. V. Cittrarasu, B. Balasubramanian, D. Kaliannan, S. Park, V. Palanivel, R. Chinnasamy, S. Santhosh, and M. Arumugam (2019). Nanosci Nanotechnol Lett.11, 11.

    Article  Google Scholar 

  7. N. Chouhan (2018). http://dx.doi.org/10.5772/intechopen.75611.

  8. R. Foldbjerg, D. A. Dang, and H. Autrup (2011). Arch. Toxicol.85, 743.

    Article  CAS  Google Scholar 

  9. S. Sarkar and V. Kotteeswaran (2018). Adv. Nat. Sci.: Nanosci. Nanotechnol.9, 025014.

    Google Scholar 

  10. X. Li, L. Wang, Y. Fan, Q. Feng, and F. Cui (2012). J. Nanomater.2012, 1.

    Google Scholar 

  11. M. Bawskar, S. Deshmukh, S. Bansod, A. Gade, and M. Rai (2015). IET Nanobiotechnol.9, 107.

    Article  Google Scholar 

  12. H. I. Salaheldin, M. H. K. Almalki, and G. E. H. Osman (2017). IET Nanobiotechnol.11, 420.

    Article  Google Scholar 

  13. B. S. Hungund, G. R. Dhulappanavar, and N. H. Ayachit (2015). J Nanomed Nanotechnol.6, 1.

    Article  Google Scholar 

  14. H. Soliman, A. Elsayed, and A. Dyaa (2018). Egypt. J. Basic Appl. Sci.. https://doi.org/10.1016/j.ejbas.2018.05.005.

    Article  Google Scholar 

  15. C. E. Escárcega-González, J. A. Garza-Cervantes, A. Vazquez-Rodríguez, L. Z. Montelongo-Peralta, M. T. Treviño-Gonzalez, E. Díaz Barriga Castro, and J. R. Morones-Ramirez (2018). Int. J. Nanomedicine13, 2349.

    Article  Google Scholar 

  16. R. Krishnan, V. Arumugam, and S. K. Vasaviah (2015). J Nanomed Nanotechnol.6, 1.

    Google Scholar 

  17. K. Bhat (2019). Saudi Dent. J.31, 76.

    Article  Google Scholar 

  18. P. Seedevi, M. Moovendhan, S. Vairamani, and A. Shanmugam (2016). Int. J. Biol. Macromol.85, 117.

    Article  CAS  Google Scholar 

  19. A. Barapatre, K. R. Aadil, and H. Jha (2016). Bioresour. Bioprocess.3, 1.

    Article  Google Scholar 

  20. U. Brahma, R. Kothari, P. Sharma, and V. Bhandari (2018). Sci Rep.8, 1.

    Article  Google Scholar 

  21. S. M. Hoseini-Alfatemi, A. Karimi, S. Armin, S. Fakharzadeh, F. Fallah, and S. Kalanaky (2018). Appl Organometal Chem.35, 3.

    Google Scholar 

  22. H. Huang, W. Lai, M. Cui, L. Liang, Y. Lin, Q. Fang, Y. Liu, and L. Xie (2010). Sci Rep.6, 1.

    Google Scholar 

  23. O. Y. Golubeva, O. V. Shamova, D. S. Orlov, T. Y. Pazina, A. S. Boldina, and V. N. Kokryakov (2010). Glass. Phys. Chem.36, 628.

    Article  CAS  Google Scholar 

  24. J. Laloy, V. Minet, L. Alpan, F. Mullie, S. Beken, O. Toussaint, S. Lucas, and J. M. Dogné (2014). Nanomedicine.1, 1.

    Google Scholar 

  25. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan (2006). Carbohydr. Res.341, 2012.

    Article  CAS  Google Scholar 

  26. P. Velusamy, C. H. Su, G. V. Kumar, S. Adhikary, K. Pandian, S. C. B. Gopinath, Y. Chen, and P. Anbu (2016). PLoS One.11, 1.

    Google Scholar 

  27. S. Marimuthu, A. A. Rahuman, G. Rajakumar, T. Santhoshkumar, A. V. Kirthi, C. Jayaseelan, A. Bagavani, A. A. Zahir, G. Elango, and C. Kamaraj (2011). J Parasitol Res.108, 1541.

    Article  Google Scholar 

  28. T. Aewsiri, S. Benjakul, and W. Visessangnan (2009). Food Chem.115, 243.

    Article  CAS  Google Scholar 

  29. K. H. Mahmoud and M. Abbo (2013). Acta A. Mol. Biomol. Spectrosc.116, 610.

    Article  CAS  Google Scholar 

  30. B. Sun and A. S. Barnarda (2017). Nanoscale.9, 12698.

    Article  CAS  Google Scholar 

  31. X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan (2016). Int J Mol Sci.17, 1.

    Google Scholar 

  32. V. Cittrarasu, B. Balasubramanian, D. Kaliannan, S. Park, V. Maluventhan, T. Kaul, W. C. Liu, and M. Arumugam (2019). Artif Cells Nanomed Biotechnol.47, 2424.

    Article  CAS  Google Scholar 

  33. S. Veena, T. Devasena, L. Ansel Vishal, S. M. Sathak Sameer, and S. Arokiyaraj Selvaraj (2019). Saudi J. Biol. Sci.26, 455.

    Article  Google Scholar 

  34. S. Agnihotri, S. Mukherji, and S. Mukherji (2014). RSC Adv.4, 3974.

    Article  CAS  Google Scholar 

  35. M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz, and S. Naseem (2016). Nanomaterials.6, 1.

    Article  Google Scholar 

  36. L. Q. Chen, L. Fang, J. Ling, C. Z. Ding, B. Kang, and C. Z. Huang (2015). Chem. Res. Toxicol.28, 501.

    Article  CAS  Google Scholar 

  37. L. E. Valenti and C. E. Giacomelli (2017). J Nanopart Res.19, 156.

    Article  Google Scholar 

  38. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, and H. Sharghi (2015). J Nanomater.2015, 1.

    Article  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Periyar University, Salem-11 by providing University Research Fellowship (PU/AD-3/URF/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Venkatesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavanya, K., Kalaimurugan, D., Shivakumar, M.S. et al. Gelatin Stabilized Silver Nanoparticle Provides Higher Antimicrobial Efficiency as Against Chemically Synthesized Silver Nanoparticle. J Clust Sci 31, 265–275 (2020). https://doi.org/10.1007/s10876-019-01644-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01644-2

Keywords

Navigation