Skip to main content
Log in

Promotion Effect of Pt-Substituted Rh55 Cluster Toward NO Adsorption and Dissociation: A First-Principles Study

  • Original Paperr
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

NO adsorption and dissociation on cuboctahedral RhnPt55-n clusters, e.g. Rh55, Rh13@Pt12Rh30, and Rh13@Pt24Rh18, have been investigated using density functional theory. Our results indicated that the most stable site of NO adsorption on Rh55 cluster is the hcp threefold hollow site, while on Pt55, NO adsorption on the bridge site is favorable. For RhnPt55-n clusters, NO prefers to adsorb on the Rh atoms; when Pt atoms distribute around the Rh, the adsorption will be enhanced. The N–O bond of adsorbed NO was elongated, and the hollow site has a larger elongation, which origins to the great down-shift of 4σ orbital and up-shift of 1π orbital of adsorbed NO. NO dissociation on hcp site (H1) of Rh55 cluster needs to overcome an energy barrier of 1.36 eV. The dissociation on bridge site (B2) of Rh55 is much easier, whose energy barriers are 0.59 eV for direct dissociation and 0.56 eV for two-step reaction. When Pt atoms substituted the (100) terrace sites of Rh55, the energy barriers have decreased by 0.23 and 0.08 eV, respectively. While when Pt atoms substituted the edge sites, it needs to overcome higher energy barriers of 0.61 and 0.63 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Loffreda, F. Delbecq, D. Simon, and P. Sautet (2001). J. Chem. Phys. 115, 8101.

    CAS  Google Scholar 

  2. A. Selim and E. Bryan (2008). J. Am. Chem. Soc. 130, 17479.

    Google Scholar 

  3. C. He, H. Wang, and P. Zhu (2011). J. Liu. J. Chem. Phys. 135, 204707.

    Google Scholar 

  4. D. Loffreda, D. Simon, and P. Sautet (2003). J. Catal. 213, 211–225.

    CAS  Google Scholar 

  5. K. Tian, X. Tu, and S. Dai (2007). Surf. Sci. 601, 3186.

    CAS  Google Scholar 

  6. W. T. Wallace, Y. Cai, M. Chen, and D. W. Goodman (2006). J. Phys. Chem. B 110, 6245.

    CAS  PubMed  Google Scholar 

  7. D. Loffreda, D. Simon, and P. Sautet (1998). J. Chem. Phys. 108, 6447.

    CAS  Google Scholar 

  8. D. Loffreda, D. Simon, and P. Sautet (1998). Chem. Phys. Lett. 291, 15.

    CAS  Google Scholar 

  9. V. A. Ranea, E. A. Bea, E. E. Mola, and R. Imbihl (2006). Surf. Sci. 600, 2663.

    CAS  Google Scholar 

  10. H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, and T. Ohno (2002). Surf. Sci. 514, 394.

    CAS  Google Scholar 

  11. V. Francesc, R. B. G. José, and F. Illas (2014). Chem. Soc. Rev. 43, 4922.

    Google Scholar 

  12. Z. Zeng, J. L. F. Da Silva, and W. Li (2010). Phys. Rev. B 81, 085408.

    Google Scholar 

  13. L. A. DeLouise and N. Winograd (1985). Surf. Sci. 159, 199.

    CAS  Google Scholar 

  14. Y. Tawaraya, S. Kudoh, K. Miyajima, and F. Mafuné (2015). J. Phys. Chem. A 119, (31), 8461–8468.

    CAS  PubMed  Google Scholar 

  15. T. Nagata, K. Koyama, S. Kudoh, K. Miyajima, J. M. Bakker, and F. Mafuné (2017). J. Phys. Chem. C 121, (49), 27417–27426.

    CAS  Google Scholar 

  16. M. J. P. Hopstaken and J. W. Niemantsverdriet (2000). J. Phys. Chem. B 104, 3058.

    CAS  Google Scholar 

  17. J. S. Villarrubia and W. Ho (1987). J. Chem. Phys. 87, 750–764.

    CAS  Google Scholar 

  18. T. W. Root, G. B. Fisher, and L. D. Schmidt (1986). J. Chem. Phys. 85, 4679.

    CAS  Google Scholar 

  19. H. J. Borg, J. J. Reijerse, R. A. Van Santen, and J. W. Niemantsverdriet (1994). J. Chem. Phys. 101, 10052.

    CAS  Google Scholar 

  20. C. G. M. Hermse, F. Frechard, A. P. Van Bavel, J. J. Lukkien, J. W. Niemantsverdriet, R. A. Van Santen, and A. P. J. Jansen (2003). J. Chem. Phys. 118, 7081–7089.

    CAS  Google Scholar 

  21. B. Hammer and J. K. Nørskov (2000). Adv. Catal. 45, 71.

    CAS  Google Scholar 

  22. J. Greeley, J. K. Nørskov, and M. Mavrikakis (2002). Annu. Rev. Phys. Chem. 53, 319.

    CAS  PubMed  Google Scholar 

  23. O. R. Inderwildi, S. J. Jenkins, and D. A. King (2007). Surf. Sci. 601, L103–L108.

    CAS  Google Scholar 

  24. S. González, D. Loffreda, P. Sautet, and F. Illas (2007). J. Phys. Chem. C 111, 11376.

    Google Scholar 

  25. S. González, C. Sousa, and F. Illas (2005). J. Phys. Chem. B 109, 4654.

    PubMed  Google Scholar 

  26. S. González, C. Sousa, and F. Illas (2006). J. Catal. 239, 431–440.

    Google Scholar 

  27. P. Ghosh, R. Pushpa, S. de Gironcoli, and S. Narasimhan (2008). J. Chem. Phys. 128, 194708.

    PubMed  Google Scholar 

  28. M. L. Anderson, M. S. Ford, P. J. Derrick, T. Drewello, D. P. Woodruff, and S. R. Mackenzie (2006). J. Phys. Chem. A 110, 10992.

    CAS  PubMed  Google Scholar 

  29. H. Xie, M. Ren, Q. Lei, and W. Fang (2011). J. Phys. Chem. A 115, 14203–14208.

    CAS  PubMed  Google Scholar 

  30. H. Xie, M. Ren, Q. Lei, W. Fang, and F. Ying (2012). J. Phys. Chem. C 116, 7776.

    CAS  Google Scholar 

  31. M. J. Piotrowski, P. Piquini, Z. Zeng, and J. L. F. Da Silva (2012). J. Phys. Chem. C 116, 20540.

    CAS  Google Scholar 

  32. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103–128.

    CAS  Google Scholar 

  33. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.

    Google Scholar 

  34. P. Hohenberg and W. Kohn (1964). Phys. Rev. 136, B864.

    Google Scholar 

  35. G. Lippert, J. Hutter, and M. Parrinello (1997). Mol. Phys. 92, 477.

    CAS  Google Scholar 

  36. J. VandeVondele and J. Hutter (2007). J. Chem. Phys. 127, 114105.

    PubMed  Google Scholar 

  37. M. Krack (2005). Theor. Chem. Acc. 114, 145–152.

    CAS  Google Scholar 

  38. J. G. Brandenburg and S. Grimme (2013). Theor. Chem. Acc. 132, 1399.

    Google Scholar 

  39. J. P. Perdew, K. Burke, and Y. Wang (1996). Phys. Rev. B 54, 16533.

    CAS  Google Scholar 

  40. J. Nocedal (1980). Math. Comput. 35, 773.

    Google Scholar 

  41. G. Henkelman, B. P. Uberuaga, and H. Jónsson (2000). J. Chem. Phys. 113, 9901.

    CAS  Google Scholar 

  42. G. Henkelman and H. Jónsson (2000). J. Chem. Phys. 113, 9978.

    CAS  Google Scholar 

  43. S. F. Boys and F. D. Bernardi (1970). Mol. Phys. 19, 553–566.

    CAS  Google Scholar 

  44. X. Cao, Q. Fu, and Y. Luo (2014). Phys. Chem. Chem. Phys. 16, 8367–8375.

    CAS  PubMed  Google Scholar 

  45. K. Yuge, T. Ichikawa, and J. Kawai (2010). Mater. Trans. 51, 321–324.

    CAS  Google Scholar 

  46. R. D. III. Johnson. Computational chemistry comparison and benchmark database; http://cccbdb.nist.gov.

  47. N. Takagi, K. Ishimura, R. Fukuda, M. Ehara, and S. Sakaki (2019). J. Phys. Chem. A 123, (32), 7021–7033.

    CAS  PubMed  Google Scholar 

  48. G. Blyholder (1964). J. Phys. Chem. 68, 2772–2777.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21776004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Zhang, L., Guo, X. et al. Promotion Effect of Pt-Substituted Rh55 Cluster Toward NO Adsorption and Dissociation: A First-Principles Study. J Clust Sci 32, 673–682 (2021). https://doi.org/10.1007/s10876-020-01831-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01831-6

Keywords

Navigation