Skip to main content
Log in

H2S adsorption and dissociation on Rh(110) surface: a first-principles study

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

First-principle study based on density functional theory are used to scrutinize the mechanism of H2S adsorption and dissociation over Rh(110) surface. For adsorption mechanisms, we probe the most favorite sites of H2S monomers over Rh(110) surface. It is determined that H2S vigorously adsorbed over high symmetry adsorption sites with preferred long-bridge (LB) site having adsorption energy − 1.00 eV, with no more than 0.50 eV, binding energy. Also we found that HS chemisorption is higher as compared to H2S on Rh(110) surface having − 3.76 eV adsorption energy, where atomic S and H binding at hollow and short-bridge site is more stronger. The energy barriers to split the bond of S–H in first and second H2S dehydrogenation are 0.18–0.36 and 0.30 eV. To further investigate, electronic density of state are employed to illustrate the interaction of adsorbed H2S with the surface of Rh(110), which is able to account for energy divergences of all species adsorbed on Rh(110) surface. Hence, our calculated results confirm that H2S dissociation over Rh(110) surface is exothermic as well as an easy process, however kinetically and thermodynamically the existence of atomic S avoid the breaking of H–S bond procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abufager, P.N., Lustemberg, P.G., Crespos, C., Busnengo, H.F.: DFT study of dissociative adsorption of hydrogen sulfide on Cu(111) and Au(111). Langmuir 24, 14022 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Alfonso, D.R.: First-principles studies of the √7 × √7R19.1 structure of sulfur on the Pd(111) surface. Surf. Sci. 601, 4899 (2007)

    Article  CAS  Google Scholar 

  • Alfonso, D.R.: First-principles studies of H2S adsorption and dissociation on metal surfaces. Surf. Sci. 602, 2758 (2008)

    Article  CAS  Google Scholar 

  • Alfonso, D.R., Cugini, A.V., Sorescu, D.C.: Adsorption and decomposition of H2S on Pd(1 1 1) surface: a first-principles study. Catal. Today 99, 315 (2005)

    Article  CAS  Google Scholar 

  • Anderson, J.R., Kemball, C.. Catalysis on evaporated metal films III. The efficiency of different metals for the reaction between ethane and deuterium. Proc. R. Soc. (Lond.) A223, 361 (1954)

    Article  Google Scholar 

  • Beeck, O.: Hydrogenation catalysts. Disc. Faraday Soc. 8, 118 (1950)

    Article  Google Scholar 

  • Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  • Blyth, R.I.R., Searle, C., Tucker, N., White, R.G., Johal, T.K., Thompson, J., Barrett, S.D. Molecular adsorption on the (0001) surfaces of rare-earth metals. Phys. Rev. B 68, 205404 (2003)

    Article  CAS  Google Scholar 

  • Bond, G.C.: Catalysis by Metals, p. 320. Academic Press, London (1962)

    Google Scholar 

  • Briant, C.L., Sieradzki, K.: Effect of impurity bonding on grain-boundary embrittlement. Phys. Rev. Lett. 63, 2156 (1989)

    Article  CAS  PubMed  Google Scholar 

  • Campbell, I.M.: Catalysis at Surfaces, p. 204. Springer, New York (1988)

    Book  Google Scholar 

  • Campbell, C.T., Koel, B.E.: H2S/Cu(111): amodel study of sulfur poisoning of water-gas shift catalysts. Surf. Sci. 183, 100 (1987)

    Article  CAS  Google Scholar 

  • Castner, D.G., Sexton, B.A., Somorjai, G.A.: Leed and thermal desorption studies of small molecules (H2, O2, CO, CO2, NO, C2H4, C2H2 AND C) chemisorbed on the rhodium (111) and (100) surfaces. Surf. Sci. 71, 519 (1978)

    Article  CAS  Google Scholar 

  • Dubois, L.H.: Vibrational spectra of atomic adsorbates: carbon, oxygen, and sulfur on Rh(100). J. Chem. Phys. 77, 5228 (1982)

    Article  CAS  Google Scholar 

  • Hedge, R.I., White, J.M.: Chemisorption and decomposition of H2S on Rh(100). J. Phys. Chem. 90, 296 (1986)

    Article  Google Scholar 

  • Hengrasmee, S., Watson, P.R., Frost, D.C., Mitchell, K.A.R.: A leed crystallographic determination of the surface structure Rh(110)-c(2 × 2)-S. Surf. Sci. 92, 71 (1980)

    Article  CAS  Google Scholar 

  • Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000)

    Article  CAS  Google Scholar 

  • Ho, P., White, J.M.: Adsorption of NO on Rh(100). Surf. Sci. 137, 103 (1984)

    Article  CAS  Google Scholar 

  • Jaffey, D.M., Madix, R.J.: The adsorption of hydrogen sulfide on clean and sulfided Au(110). Surf. Sci. 258, 359 (1991)

    Article  CAS  Google Scholar 

  • Jiang, D.E., Carter, E.A.: Adsorption, diffusion, and dissociation of H2S on Fe(100) from first principles. J. Phys. Chem. B 108, 19140 (2004)

    Article  CAS  Google Scholar 

  • Jiang, D.E., Carter, E.A.: First principles study of H2S adsorption and dissociation on Fe(1 1 0). Surf. Sci. 583, 60 (2005)

    Article  CAS  Google Scholar 

  • Johnson, S., Madix, R.J.: Desorption of hydrogen and carbon monoxide from Ni (100), Ni (100) p (2 × 2) S, and Ni (100) c (2 × 2) S surfaces. Surf. Sci. 108, 77 (1981)

    Article  CAS  Google Scholar 

  • Kemball, C.. Catalysis on evaporated metal films—I. The efficiency of different metals for the reaction between ammonia and deuterium. Proc. Roy. Soc. (Lond.) A214, 413 (1952)

    Article  Google Scholar 

  • Kim, Y., Peebles, H.C., White, J.M.: Adsorption of D2, CO and the interaction of CO-adsorbed D2 and CO on Rh(100). Surf. Sci. 114, 363 (1982)

    Article  CAS  Google Scholar 

  • Koestner, R.J., Salmeron, M., Kollin, E.B., Gland, J.L.: Formation of Sulfhydryl (SH) species on the clean and (2 × 2)-S covered Pt(111) surfaces by H2S decomposition. Chem. Phys. Lett. 125, 134 (1986)

    Article  CAS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996a)

    Article  CAS  Google Scholar 

  • Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996b)

    Article  CAS  Google Scholar 

  • Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)

    Article  CAS  Google Scholar 

  • Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  • Leavitt, A.J., Beebe, T.P. Jr.: Chemical reactivity studies of hydrogen sulfide on Au(111). Surf. Sci. 314, 23 (1994)

    Article  CAS  Google Scholar 

  • Luo, H.J., Cai, J.Q., Tao, X.M., Tan, M.Q.: First-principles study of H2S adsorption and dissociation on Mo(110). Comput. Mater. Sci. 101, 47 (2015)

    Article  CAS  Google Scholar 

  • Makov, G., Payne, M.C.: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014 (1995)

    Article  CAS  Google Scholar 

  • Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)

    Article  CAS  Google Scholar 

  • Michaelides, A., Hub, P.: Hydrogenation of S to H2S on Pt(111): a first-principles study. J. Chem. Phys. 115, 8570 (2001)

    Article  CAS  Google Scholar 

  • Mills, G.A., Steffgen, F.W.: Catalytic methanation. Catal. Rev. 8, 159 (1974)

    Article  Google Scholar 

  • Mills, G., Jónsson, H., Schenter, G.K.: Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305 (1995)

    Article  CAS  Google Scholar 

  • Mohsenzada, A., Bolton, K., Richards, T.: DFT study of the adsorption and dissociation of water on Ni(111), Ni(110) and Ni(100) surfaces. Surf. Sci. 627, 1 (2014)

    Article  CAS  Google Scholar 

  • Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  • Neugebauer, J., Scheffler, M.: Adsorbate–substrate and adsorbate–adsorbate interactions of Na and K adlayers on Al (111). Phys. Rev. B 46, 16067 (1992)

    Article  CAS  Google Scholar 

  • Peebles, H.C., Beck, D.D., White, J.M., Campbell, C.T.: Structure of Ag ON Rh and its effect on the adsorption of D2 and CO. Surf. Sci. 150, 120 (1985)

    Article  CAS  Google Scholar 

  • Peng, S.F., Ho, J.J.: Theoretical study of H2S dissociation and sulfur oxidation on a W(111). Surf. J. Phys. Chem. C 114, 19489 (2010)

    Article  CAS  Google Scholar 

  • Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396(E) (1997)

    Article  Google Scholar 

  • Péter, P.: Convergence acceleration of iterative sequences. The case of scf iteration. Chem. Phys. Lett. 73, 393 (1980)

    Article  Google Scholar 

  • Qin, C., Whitten, J.L.: Interaction of S, SH and H2S with Ag(1 0 0). Surf. Sci. 588, 83 (2005)

    Article  CAS  Google Scholar 

  • Rice, J.R., Wang, J.S.: Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 107, 23 (1989)

    Article  Google Scholar 

  • Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J., Norskov, J.K.: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83 (2007)

    Article  CAS  Google Scholar 

  • Rovida, G., Pratesi, P.: Sulfur overlayers on the low-index faces of silver. Surf. Sci. 104, 609 (1981)

    Article  CAS  Google Scholar 

  • Shelef, M.: Nitric oxide: surface reactions and removal from auto exhaust. Catal. Rev. Sci. Eng. 11, 1 (1975)

    Article  CAS  Google Scholar 

  • Spencer, M.J.S., Yarovsky, I.: Ab Initio molecular dynamics study of H2S dissociation on the Fe(110) surface. J. Phys. Chem. C 111, 16372 (2007)

    Article  CAS  Google Scholar 

  • Spencer, M.J.S., Todorova, N., Yarovsky, I.: H2S dissociation on the Fe(1 0 0) surface: an ab initio molecular dynamics study. Surf. Sci. 602, 1547 (2008)

    Article  CAS  Google Scholar 

  • Srikrishnam, V., Liu, H.W., Ficalora, P.J.: Selective chemisorption and hydrogen embrittlement—the role of H2S. Scr. Metall. 9, 1341 (1975)

    Article  Google Scholar 

  • Tanaka, K.I., Yamada, T., Nieuwenhuys, B.E.: Synthesis of metastable surface complexes by chemical reactions N and NHx complexes on Pd(100), Rh(100) and Pt–Rh(100). Surf. Sci. 242, 503 (1991)

    Article  CAS  Google Scholar 

  • Tang, Q.L.: H2S splitting on Cu(110): insight from combined periodic density functional theory calculations and microkinetic simulation. Int. J. Quant. Chem. 113, 1992 (2013)

    Google Scholar 

  • Usman, T., Luo, H.J., Zhang, Y., Tao, X.M., Tan, M.Q.: Adsorption and dissociation of H2S on Rh(100) surface by first-principle study. Appl. Surf. Sci. 425, 367 (2017)

    Article  CAS  Google Scholar 

  • Wang, J., Wang, S.Q.: Surface energy and work function of fcc and bcc crystals: density functional study. Surf. Sci. 630, 216 (2014)

    Article  CAS  Google Scholar 

  • Wilke, S., Scheffler, M.: Poisoning of Pd (100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur. Surf. Sci. 329, L605 (1995)

    Article  CAS  Google Scholar 

  • Yates, J.T. Jr., Thiel, P.A., Weinberg, W.H.: The catalytic reaction between adsorbed oxygen and hydrogen on Rh(111). Surf. Sci. 82, 45 (1979)

    Article  CAS  Google Scholar 

  • Yu, Y., Dixon-Warren, St.J., Astle, N.: Molecular-beam study of the adsorption and desorption of hydrogen sulfide on Ag{111}. Chem. Phys. Lett. 312, 455 (1999)

    Article  CAS  Google Scholar 

  • Zhang, X.-Q., Hütter, A.B.: Modeling and simulations in photoelectrochemical water oxidation: from single level to multiscale modeling. ChemSusChem 9, 1223 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.-Q., Klaver, P., van Santen, R., van de Sanden, M.C.M., Hütter, A.B.: Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. J. Phys. Chem. C 120, 18201 (2016)

    Article  CAS  Google Scholar 

  • Zhou, Y.G., Zu, X.T., Nie, J.L., Xiao, H.Y.: First-principles study of sulfur adsorption on Mo(110). Chem. Phys. 353, 109 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported financially by the Natural Science Foundation of China (NSFC) under Grant No. 11274084. The first authors (TU) would like to thank Drs. H.J. Luo and J.Q Cai, Wenzhou University, for their kind help during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-qiu Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, T., Tan, Mq. H2S adsorption and dissociation on Rh(110) surface: a first-principles study. Adsorption 24, 563–574 (2018). https://doi.org/10.1007/s10450-018-9963-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9963-0

Keywords

Navigation