Skip to main content

Advertisement

Log in

Graphene Hybridized with Tungsten disulfide (WS2) Based Heterojunctions Photoanode Materials for High Performance Dye Sensitized Solar Cell Device (DSSCs) Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, high order crystalline tungsten disulfide (WS2) nanoparticles/graphene sheets (WS2/Gs) were prepared via facile hydrothermal technique. Hexagonal crystalline structure of WS2 with individual spherical shaped nanoparticles within the average sizes of 35–40 nm were found through XRD, SEM and TEM analysis. Further the structure of the WS2/Gs was found with the presence of D and G bands along with WS2 based Raman modes in the Raman spectra analysis. The incorporated WS2 into Gs will significantly increasing the absorption property, tuning the band gap (2.87–2.21 eV) and rapid electron charge transfer process, which is identified through UV-DRS and PL analysis. The fabricated dye-sensitized solar cells device with WS2/graphene photo-electrode showed an open circuit voltage (Jsc) of 0.79 mV, short circuit current (Voc) of 18.6 mA cm−2, fill factor of 0.66, and power conversion efficiency of 9.6%. This could be due to the high surface area (98.45) and mesoporous nature (10.25 nm) of the WS2/Gs composite hybrid photo-anodes. The detailed mechanism of WS2 improved by Gs is also discussed in detail. The strategy could provide new ideas for obtaining novel hybrid photo-anodes with excellent photovoltaic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Indhumathy and A. Prakasam (2020). J. Clust. Sci. 31, 91.

    CAS  Google Scholar 

  2. M. Yousefi, M. Sabet, M. Salavati-Niasari, and H. Emadi (2012). J. Clust. Sci. 23, 511.

    CAS  Google Scholar 

  3. Z. Zarghami, M. Ramezani, and K. Motevalli (2016). J. Clust. Sci. 27, 1451.

    CAS  Google Scholar 

  4. B. O’Regan and M. Grätzel (1991). Nature 353, 737.

    Google Scholar 

  5. A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel (2011). Science 334, 629.

    CAS  PubMed  Google Scholar 

  6. M. Grätzel (2003). J. Photochem. Photobiol. C 4, 145.

    Google Scholar 

  7. K. S. Lee, H. K. Lee, D. H. Wang, N. J. Park, J. Y. Lee, O. O. Park, and J. H. Park (2010). Chem. Commun. 46, 4506.

    Google Scholar 

  8. M. X. Wu, X. Lin, T. H. Wang, J. S. Qiu, and T. L. Ma (2011). Energy Environ. Sci. 4, 2308.

    CAS  Google Scholar 

  9. M. K. Wang, A. M. Anghel, M. Marsan, N. C. Ha, S. Pootrakulchote, S. M. Zakeeruddin, and M. Grätzel (2009). J. Am. Chem. Soc. 131, 15976.

    CAS  PubMed  Google Scholar 

  10. J. S. Jang, D. J. Ham, E. Ramasamy, J. Lee, and J. S. Lee (2010). Chem. Commun. 46, 8600.

    CAS  Google Scholar 

  11. C. H. Bu, Q. D. Tai, Y. M. Liu, S. S. Guo, and X. Z. Zhao (2013). J. Power Sources 221, 78.

    CAS  Google Scholar 

  12. G. Q. Wang, W. Xing, and S. P. Zhuo (2012). Electrochim. Acta. 66, 151.

    CAS  Google Scholar 

  13. J. M. Woods (2016). ACS Nano 10, 2004–2009.

    CAS  PubMed  Google Scholar 

  14. Q. Fu (2015). Adv. Mater. 27, 4732–4738.

    CAS  PubMed  Google Scholar 

  15. Y. Zhong (2017). Nano Energy 31, 84–89.

    CAS  Google Scholar 

  16. Y. Cao (2018). Appl. Catal. B Environ. 238, 51–60.

    CAS  Google Scholar 

  17. X. Han, Y. Yu, Y. Huang, D. Liu, and B. Zhang (2017). ACS Catal. 7, 6464–6470.

    CAS  Google Scholar 

  18. K. Peng, L. Fu, H. Yang, J. Ouyang, and A. Tang (2016). Nano Res. 10, 570–583.

    Google Scholar 

  19. N. Li (2018). Appl. Catal. B Environ. 238, 27–37.

    CAS  Google Scholar 

  20. Y. Zhao (2015). Adv. Mater. 27, 7824–7831.

    CAS  PubMed  Google Scholar 

  21. M. Pumera and Z. Sofer (2017). Chem. Soc. Rev. 46, 4450–4463.

    CAS  PubMed  Google Scholar 

  22. H. Liu, D. Chen, Z. Wang, H. Jing, and R. Zhang (2017). Appl. Catal. B Environ. 203, 300–313.

    CAS  Google Scholar 

  23. J. Shi (2016). Adv. Mater. 28, 10664–10672.

    CAS  PubMed  Google Scholar 

  24. Y. Sang (2015). Adv. Mater. 27, 363–369.

    CAS  PubMed  Google Scholar 

  25. D. Su, S. Dou, and G. Wang (2014). Chem. Commun. 50, 4192.

    CAS  Google Scholar 

  26. Y. Zhong, G. Zhao, F. Ma, Y. Wu, and X. Hao (2016). Appl. Catal. B Environ. 199, 466–472.

    CAS  Google Scholar 

  27. F. Raza (2017). J. Am. Chem. Soc. 139, 14767–14774.

    CAS  PubMed  Google Scholar 

  28. X. Zhao, X. Ma, J. Sun, D. Li, and X. Yang (2016). ACS Nano. 10, 2159–2166.

    CAS  PubMed  Google Scholar 

  29. J.-P. Zou (2015). Appl. Catal. B Environ. 179, 220–228.

    CAS  Google Scholar 

  30. Y. Wen, H. Zhang, and S. Zhang (2014). Nanoscale 6, 13090–13096.

    CAS  PubMed  Google Scholar 

  31. S. V. P. Vattikuti, C. Byon, and C. V. Reddy (2016). Mater. Res. Bull. 75, 193–203.

    CAS  Google Scholar 

  32. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang (2013). Nat. Chem. 5, 263.

    PubMed  Google Scholar 

  33. A. Kuc, N. Zibouche, and T. Heine (2011). Phys. Rev. B Condens. Matter Mater. Phys. 83, 245213.

    Google Scholar 

  34. C. Lan, C. Li, Y. Yin, and Y. Liu (2015). Nanoscale 7, 5974.

    CAS  PubMed  Google Scholar 

  35. G. T. Yue, J. H. Wu, J. Y. Lin, Y. M. Xiao, S. Y. Tai, L. M. Lin, M. L. Huang, and L. Zhang (2012). Carbon 55, 1.

    Google Scholar 

  36. Q. J. Zhu, X. F. Chu, Z. Y. Zhang, W. L. Dai, and K. N. Fan (2013). RSC Adv. 3, 1744.

    CAS  Google Scholar 

  37. H. S. Kim, Y. H. Chung, S. H. Kang, and Y. E. Sung (2009). Electrochim. Acta. 54, 3606.

    CAS  Google Scholar 

  38. P. Pokharel and D. S. Lee (2014). J. Nanosci. Nanotechnol. 14, 5718–5721.

    CAS  PubMed  Google Scholar 

  39. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour (2010). ACS Nano. 4, 4806–4814.

    CAS  PubMed  Google Scholar 

  40. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron. 25, 730–735.

    CAS  Google Scholar 

  41. M. S. Dresselhaus, A. Jorio, G. Hofmann, G. Dresselhaus, and R. Saito (2010). Nano Lett. 10, 751–758.

    CAS  PubMed  Google Scholar 

  42. F.-J. Zhang, S.-F. Zhu, F.-Z. Xie, J. Zhang, and Z.-D. Meng (2013). Sep. Purif. Technol. 113, 1–8.

    Google Scholar 

  43. M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci. 30, 351–363.

    CAS  Google Scholar 

  44. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789–2801.

    CAS  Google Scholar 

  45. J. Gao, B. Li, J. Tan, P. Chow, T. M. Lu, and N. Koratkar (2016). ACS Nano 10, 2628.

    CAS  PubMed  Google Scholar 

  46. J. Gao, Y. D. Kim, L. Liang, J. C. Idrobo, P. Chow, and J. Tan (2016). J. Adv. Mater. 28, 9735–9743.

    CAS  Google Scholar 

  47. R. BoopathiRaja and M. Parthibavarman (2019). J. Alloy. Compd. 811, 152084.

    CAS  Google Scholar 

  48. M. Grätzel (2009). Acc. Chem. Res. 42, 1788.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakasam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, D., Prakasam, A. Graphene Hybridized with Tungsten disulfide (WS2) Based Heterojunctions Photoanode Materials for High Performance Dye Sensitized Solar Cell Device (DSSCs) Applications. J Clust Sci 32, 621–630 (2021). https://doi.org/10.1007/s10876-020-01828-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01828-1

Keywords

Navigation