Skip to main content

Advertisement

Log in

Improving the efficiency of Dye-sensitized solar cells by decorating WSe2 Photoanodes with 2D graphene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For eco-friendly, economic, and renewable energy source, dye-sensitized solar cell (DSSC) has attracted extensive attention in current era. DSSC faces various researches toward the enhancement of its efficiency. Developing high-performance photoanode for efficient DSSCs is urgent need and it is still under research. In this regard, we successfully synthesized 2D graphene-decorated WSe2 by simple hydrothermal approach. The synthesized photoanode materials were characterized by advanced technique such as XRD, SEM, TEM, EDAX, PL, and XPS to investigate their size, morphology, crystalline phase, structure, chemical nature, and purity. The XRD results exposed the hexagonal cubic phase of WSe2. The different morphologies like spherical and 2D sheet were confirmed for WSe2, graphene through SEM micrograph which was further confirmed by TEM. The EDAX and XPS results proved the purity of composite photoanode and W+6 and W+4 state of tungsten in composite, respectively. UV and PL results confirmed the improved optical properties and reduced band gap during graphene incorporation. The surface area and pore size of WSe2/graphene composite was determined using N2 absorption–desorption measurements and found to be 105.2 m2/g and 19.8 nm, respectively, which is higher than that of pristine WSe2 (86.3 m2/g; 34.2 nm). DSSCs have been fabricated with these materials such as WSe2, RGW1, RGW2, and RGW3 as photoanodes. A device containing 10 wt% of 2D graphene-incorporated hybrid material exhibits significant improvements over the pure counterpart, due to less recombination of photo-generated electrons, rapid charge collection, and higher dye sensitization. The 2D graphene-decorated WSe2hybrid material as photoanode thus offers a promising low-cost Pt-free counter electrode for DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated/ analyzed during the current study are included in this article and data sharing not applicable.

References

  1. M.A. Green, A. Ho-Baillie, Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett. 2(4), 822–830 (2017)

    Article  CAS  Google Scholar 

  2. F. Zhuping, F.D. Eisner, X. Jiao, M. Azzouzi, J.A. Röhr, Y. Han, M. Shahid et al., Adv. Mater. 30(8), 1705209 (2018)

    Article  Google Scholar 

  3. V. Sugathan, E. John, K. Sudhakar, Renew. Sustain. Energy Rev. 52, 54–64 (2015)

    Article  CAS  Google Scholar 

  4. S. Daulay, A.F. Madsuha, E.S. Rosa, A.H. Yuwono, Journal of Physics: Conference Series (IOP Publishing, Bristol, 2019)

    Google Scholar 

  5. S. Nagarajan, P. Sudhagar, V. Raman, W. Cho, K.S. Dhathathreyan, Y.S. Kang, J. Mater. Chem. A 1(4), 1048–1054 (2013)

    Article  CAS  Google Scholar 

  6. G. Boschloo, Improving the performances of dye sensitized solar cells. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00077

    Article  Google Scholar 

  7. S. Chatterjee, W.A. Webre, S. Patra, B. Rout, G.A. Glass, F. D’Souza, S. Chatterjee, J. Alloy. Compd. 826, 154188 (2020)

    Article  CAS  Google Scholar 

  8. Y. Ding, J. Yao, L. Hu, S. Dai, Sol. Energy 183, 587–593 (2019)

    Article  CAS  Google Scholar 

  9. M.S. Ahmad, A.K. Pandey, N. Abd Rahim, Renew. Sustain. Energy Rev. 77, 89–108 (2017)

    Article  Google Scholar 

  10. H. Zheng, Y. Tachibana, K. Kalantar-Zadeh, Langmuir 26(24), 19148–19152 (2010)

    Article  CAS  Google Scholar 

  11. P. Baraneedharan, S. Chidambaram, N. Kasi, S. Muthusamy. Recent advances in SnO2 based photo anode materials for third generation photovoltaics. In Materials science forum. Vol 771 (Trans Tech Publications Ltd, 2014) p. 25–38.

  12. D. Sinha, D. De, D. Goswami, A. Ayaz, Mater. Today: Proc. 5(1), 2056–2063 (2018)

    CAS  Google Scholar 

  13. W.Z. Teo, E.L.K. Chng, Z. Sofer, M. Pumera, Chem.—A Eur. J. 20(31), 9627–9632 (2014)

    Article  CAS  Google Scholar 

  14. Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng, L. Fu, J. Mater. Chem. A 5(18), 8187–8208 (2017)

    Article  CAS  Google Scholar 

  15. S. Hussain, S.A. Patil, D. Vikraman, A.A. Arbab, S.H. Jeong, H.S. Kim, J. Jung, Appl. Surf. Sci. 406, 84–90 (2017)

    Article  CAS  Google Scholar 

  16. L. Wu, A.J. Van Hoof, N.Y. Dzade, L. Gao, M.I. Richard, H. Friedrich, N.H. De Leeuw, E.J. Hensen, J.P. Hofmann, Phys. Chem. Chem. Phys. 21(11), 6071–6079 (2019)

    Article  CAS  Google Scholar 

  17. F. Raza, D. Yim, J.H. Park, H.I. Kim, S.J. Jeon, J.H. Kim, J. Am. Chem. Soc. 139(41), 14767–14774 (2017)

    Article  CAS  Google Scholar 

  18. J. Luxa, P. Vosecký, V. Mazánek, D. Sedmidubsky, M. Pumera, P. Lazar, Z. Sofer, ACS Catal. 7(9), 5706–5716 (2017)

    Article  CAS  Google Scholar 

  19. N.D. Boscher, C.J. Carmalt, I.P. Parkin, J. Mater. Chem. 16(1), 122–127 (2006)

    Article  CAS  Google Scholar 

  20. Hu. Bingbing, Q. Tang, B. He, L. Lin, H. Chen, J. Power Sour. 267, 445–451 (2014)

    Article  Google Scholar 

  21. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon 39(4), 507–514 (2001)

    Article  CAS  Google Scholar 

  22. L. Wei, Q. Wu, W. Chen, D. Wang, B. Jiang, G. Sun, F. Yu, J. Feng, Y. Yang, J. Solid State Electrochem. 24(2), 263–272 (2020)

    Article  CAS  Google Scholar 

  23. J. Li, P. Liu, Y. Qu, T. Liao, B. Xiang, Int. J. Hydrogen Energy 43(5), 2601–2609 (2018)

    Article  CAS  Google Scholar 

  24. B. Qiu, X.W. Zhao, G.C. Hu, W.W. Yue, X.B. Yuan, J.F. Ren, Low-Dimens. Syst. Nanostr 116, 113729 (2020)

    Article  CAS  Google Scholar 

  25. Z. Zhang, X. Yang, Y. Fu, RSC Adv. 6(16), 12726–12729 (2016)

    Article  CAS  Google Scholar 

  26. M. Durairasan, P.S. Karthik, J. Balaji, B. Rajeshkanna, Diam. Relat. Mater. 111, 108174 (2021)

    Article  CAS  Google Scholar 

  27. Z. Liu, H. Zhao, N. Li, Y. Zhang, X. Zhang, Y. Du, Inorganic Chem. Front. 3(2), 313–319 (2016)

    Article  CAS  Google Scholar 

  28. J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Appl. Surf. Sci. 256(9), 2826–2830 (2010)

    Article  CAS  Google Scholar 

  29. V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, A. Buasri, Adv. Mater. Sci. Engine. 5, 5–6 (2013). https://doi.org/10.1155/2013/923403

    Article  CAS  Google Scholar 

  30. A. Ali, W.C. Oh, Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  31. S.A. Abrol, C. Bhargava, P.K. Sharma, Mater Res Express 8(4), 045010 (2021)

    Article  CAS  Google Scholar 

  32. J.L. Song, X. Wang, E. Physica, Low-dimens. Syst. Nanostruct. 81, 14–18 (2016)

    Article  CAS  Google Scholar 

  33. P. Xia, B. Zhu, B. Cheng, J. Yu, J. Xu, ACS Sustain. Chem. Eng. 6(1), 965–973 (2018)

    Article  CAS  Google Scholar 

  34. S.V. Pol, V.G. Pol, J.M. Calderon-Moreno, A. Gedanken, J. Phys. Chem. C 112(14), 5356–5360 (2008)

    Article  CAS  Google Scholar 

  35. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, J. Mater. Sci.: Mater. Electron. 31(18), 15919–15930 (2020)

    CAS  Google Scholar 

  36. S. Adhikari, K.S. Chandra, D.H. Kim, G. Madras, D. Sarkar, Adv. Powder Technol. 29(7), 1591–1600 (2018)

    Article  CAS  Google Scholar 

  37. H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 13(7), 3426–3433 (2013)

    Article  CAS  Google Scholar 

  38. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260, 117–125 (2015)

    Article  CAS  Google Scholar 

  39. M. Durairasan, P.S. Karthik, J. Balaji, B. Rajeshkanna, Ionics 27(5), 2151–2158 (2021)

    Article  CAS  Google Scholar 

  40. Y. Wang, C.X. Guo, X. Wang, C. Guan, H. Yang, K. Wang, C.M. Li, Energy Environ. Sci. 4(1), 195–200 (2011)

    Article  CAS  Google Scholar 

  41. F. Xu, J. Chen, X. Wu, Y. Zhang, Y. Wang, J. Sun, H. Bi, W. Lei, Y. Ni, L. Sun, J. Phys. Chem. C 117, 8619–8627 (2013)

    Article  CAS  Google Scholar 

  42. L. Wei, S. Chen, Y. Yang, Y. Dong, W. Song, R. Fan, J. Nanosci. Nanotechnol. 18(2), 976–983 (2018)

    Article  CAS  Google Scholar 

  43. L. Wei, P. Wang, Y. Yang, Z. Zhan, Y. Dong, W. Song, R. Fan, Inorg. Chem. Front. 5(1), 54–62 (2018)

    Article  CAS  Google Scholar 

  44. H. Ding, S. Zhang, J.T. Chen, X.P. Hu, Z.F. Du, Y.X. Qiu, D.L. Zhao, Thin Solid Films 584, 29–36 (2015)

    Article  CAS  Google Scholar 

  45. G. Yue, J. Wu, Y. Xiao, M. Huang, J. Lin, J.Y. Lin, J. Mater. Chem. A 1(4), 1495–1501 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The author confirm contribution to the paper as follows: study conception, experimental analysis, and interpretation of results were carried out by S, Assistant Professor, Department of Electrical and Electronics Engineering and manuscript was prepared by SPM, Assistant Professor, Department of Electrical and Electronics Engineering.

Corresponding author

Correspondence to N. Shobanadevi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the research work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobanadevi, N., Mangaiyarkarasi, S.P. Improving the efficiency of Dye-sensitized solar cells by decorating WSe2 Photoanodes with 2D graphene. J Mater Sci: Mater Electron 33, 25198–25210 (2022). https://doi.org/10.1007/s10854-022-09224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09224-3

Navigation