Skip to main content
Log in

Facile Development of Hybrid Bulk-Nanostructured SnSe/SnS for Antibacterial Activity with Negligible Cytotoxicity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The growing appearance of multidrug-resistant bacteria represents one of the greatest challenges in the medical supervision of infectious diseases, and requires the growth of novel antimicrobial agents. Owing to the lower toxicity and cheapness, we have reported facile development of SnS, SnSe and their bulk-nanocomposite (SnSe/SnS) for antimicrobial application. In addition, we have also revealed corresponding hemolytic activities to ensure the effectuality of their antimicrobial capabilities. The antimicrobial properties of SnSe, SnS and SnSe/SnS were studied against Staphylococcus aureus (Gram positive bacteria) and Escherichia coli (Gram negative bacteria), reflecting a considerable control over their growth. SnSe picturized a higher antibacterial potential against the selected bacterial strains as compared to SnS. Notably, SnSe not only exhibited extremely low cytotoxicity itself but it also decreased the cytotoxicity of SnS in SnSe/SnS nanostructure. Relatively lower cytotoxicity of SnSe and SnSe/SnS against erythrocytes affirmed their novel and systematic application as an antimicrobial material compared to SnS.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. S. Weiss (2010). ACS Nano 4, (4), 1771–1772. https://doi.org/10.1021/nn100710n.

    Article  CAS  PubMed  Google Scholar 

  2. M. Thiruvengadam, G. Rajakumar, and I.-M. Chung (2018). 3 Biotech. https://doi.org/10.1007/s13205-018-1104-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. S. Chavali and M. P. Nikolova (2019). SN Appl. Sci. 1, (6), 607. https://doi.org/10.1007/s42452-019-0592-3.

    Article  CAS  Google Scholar 

  4. C.-H. Lai, M.-Y. Lu, and L.-J. Chen (2011). J. Mater. Chem. 22, (1), 19–30. https://doi.org/10.1039/C1JM13879K.

    Article  Google Scholar 

  5. M. I. Aziz, F. Mughal, H. M. Naeem, A. Zeb, M. A. Tahir, and M. A. Basit (2019). Mater. Chem. Phys. 229, 508–513. https://doi.org/10.1016/j.matchemphys.2019.03.042.

    Article  CAS  Google Scholar 

  6. F. Mughal, M. Muhyuddin, M. Rashid, T. Ahmed, M. A. Akram, and M. A. Basit (2019). Chem. Phys. Lett. 717, 69–76. https://doi.org/10.1016/j.cplett.2019.01.010.

    Article  CAS  Google Scholar 

  7. H. M. Naeem, et al. (2019). J. Mater. Sci. Mater. Electron. 30, (15), 14508–14518. https://doi.org/10.1007/s10854-019-01822-y.

    Article  CAS  Google Scholar 

  8. S. Butt, et al. (2019). J. Alloys Compd. 786, 557–564. https://doi.org/10.1016/j.jallcom.2019.01.359.

    Article  CAS  Google Scholar 

  9. M. P. Genovese, I. V. Lightcap, and P. V. Kamat (2012). ACS Nano 6, (1), 865–872. https://doi.org/10.1021/nn204381g.

    Article  CAS  PubMed  Google Scholar 

  10. N. Fajrina and M. Tahir (2019). Int. J. Hydrog. Energy 44, (2), 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200.

    Article  CAS  Google Scholar 

  11. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui (2010). ACS Appl. Mater. Interfaces 2, (8), 2385–2392. https://doi.org/10.1021/am100394x.

    Article  CAS  PubMed  Google Scholar 

  12. M. Nazir, M. I. Aziz, I. Ali, and M. A. Basit (2019). Photonics Nanostruct. Fundam. Appl. 36, 100721. https://doi.org/10.1016/j.photonics.2019.100721.

    Article  Google Scholar 

  13. J. G. Yu, A. S. Yue, and O. M. Stafsudd (1981). J. Cryst. Growth 54, (2), 248–252. https://doi.org/10.1016/0022-0248(81)90469-3.

    Article  CAS  Google Scholar 

  14. W. Shi, et al. (2018). Adv. Sci. 5, (4), 1700602. https://doi.org/10.1002/advs.201700602.

    Article  CAS  Google Scholar 

  15. C. Rana and S. Saha (2019). Mater. Today Proc. 11, 667–672. https://doi.org/10.1016/j.matpr.2019.03.025.

    Article  CAS  Google Scholar 

  16. R. Mariappan, T. Mahalingam, and V. Ponnuswamy (2011). Optik 122, (24), 2216–2219. https://doi.org/10.1016/j.ijleo.2011.01.015.

    Article  CAS  Google Scholar 

  17. A. Muthuvinayagam and B. Viswanathan (2015). J. Chem. Inorg. Phys. Theor. Anal. 54, (2), 155–160.

    Google Scholar 

  18. M. Du, X. Yin, and H. Gong (2015). Mater. Lett. 152, 40–44. https://doi.org/10.1016/j.matlet.2015.03.020.

    Article  CAS  Google Scholar 

  19. Z. Shen, Y. Hu, Y. Chen, X. Zhang, K. Wang, and R. Chen (2015). J. Power Sour. 278, 660–667. https://doi.org/10.1016/j.jpowsour.2014.12.106.

    Article  CAS  Google Scholar 

  20. L. Cheng, et al. (2017). Mater. Res. 20, (6), 1748–1755. https://doi.org/10.1590/1980-5373-mr-2017-0377.

    Article  CAS  Google Scholar 

  21. N. Koteeswara Reddy and K. T. Ramakrishna Reddy (2007). Mater. Chem. Phys. 102, (1), 13–18. https://doi.org/10.1016/j.matchemphys.2006.10.009.

    Article  CAS  Google Scholar 

  22. E. Mohammadi, M. Aliofkhazraei, and A. S. Rouhaghdam (2018). Ceram. Int. 44, (2), 1471–1482. https://doi.org/10.1016/j.ceramint.2017.10.053.

    Article  CAS  Google Scholar 

  23. J. Chao, et al. (2012). CrystEngComm 14, (9), 3163–3168. https://doi.org/10.1039/C2CE06586J.

    Article  CAS  Google Scholar 

  24. M. Nazir, M. Muhyuddin, F. Mughal, and M. A. Basit, “Simplistic development and characterization of S/Se based metal chalcogenides for energy applications: Development of S/Se based metal chalcogenides,” in 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2019, pp. 42–48, https://doi.org/10.1109/ibcast.2019.8667204.

  25. L. Ling, Q. Zhang, L. Zhu, C.-F. Wang, and S. Chen (2014). RSC Adv. 5, (3), 2155–2158. https://doi.org/10.1039/C4RA10392K.

    Article  CAS  Google Scholar 

  26. S. Rahaman, K. B. Jagannatha, Pradeep, A. Sriram, Anirudha, and Nitin (2018) Mater. Today Proc., 5, (1), Part 3, 3117–3120. https://doi.org/10.1016/j.matpr.2018.01.117.

  27. M. A. Basit, M. A. Abbas, E. S. Jung, Y. M. Park, J. H. Bang, and T. J. Park (2016). Electrochim. Acta 211, 644–651. https://doi.org/10.1016/j.electacta.2016.06.075.

    Article  CAS  Google Scholar 

  28. F. U. Hassan, U. Ahmed, M. Muhyuddin, M. Yasir, M. N. Ashiq, and M. A. Basit (2019). Mater. Res. Bull. 120, 110588. https://doi.org/10.1016/j.materresbull.2019.110588.

    Article  CAS  Google Scholar 

  29. M. A. Abbas, et al. (2017). J. Phys. Chem. C 121, (33), 17658–17670. https://doi.org/10.1021/acs.jpcc.7b05207.

    Article  CAS  Google Scholar 

  30. M. N. Ashiq, et al. (2017). New J. Chem. 41, (23), 14689–14695. https://doi.org/10.1039/C7NJ04030J.

    Article  CAS  Google Scholar 

  31. H. Tsukigase, Y. Suzuki, M.-H. Berger, T. Sagawa, and S. Yoshikawa (2011). J. Nanosci. Nanotechnol. 11, (3), 1914–1922. https://doi.org/10.1166/jnn.2011.3582.

    Article  CAS  PubMed  Google Scholar 

  32. M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal. 6, (2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005.

    Article  PubMed  Google Scholar 

  33. A. K. Kidsley, et al. (2018). Front. Microbiol.. https://doi.org/10.3389/fmicb.2018.01207.

    Article  PubMed  PubMed Central  Google Scholar 

  34. V. Tiwari, J. Vashistt, A. Kapil, and R. R. Moganty (2012). PLoS ONE 7, (6), e39451. https://doi.org/10.1371/journal.pone.0039451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O. O. Odebiyi and E. A. Sofowora (1978). Lloydia 41, (3), 234–246.

    CAS  PubMed  Google Scholar 

  36. A. Raza, et al. (2016). Pharm. Biol. 54, (3), 523–529. https://doi.org/10.3109/13880209.2015.1052148.

    Article  CAS  PubMed  Google Scholar 

  37. M. Zuber, et al. (2014). J. Appl. Polym. Sci.. https://doi.org/10.1002/app.39806.

    Article  Google Scholar 

  38. S. A. Kim, M. A. Abbas, L. Lee, B. Kang, H. Kim, and J. H. Bang (2016). Phys. Chem. Chem. Phys. 18, (44), 30475–30483. https://doi.org/10.1039/C6CP04204J.

    Article  CAS  PubMed  Google Scholar 

  39. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12, (7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  40. K. G. Deepa and J. Nagaraju (2012). Mater. Sci. Eng. B 177, (13), 1023–1028. https://doi.org/10.1016/j.mseb.2012.05.006.

    Article  CAS  Google Scholar 

  41. Y. Kawano, J. Chantana, and T. Minemoto (2015). Curr. Appl. Phys. 15, (8), 897–901. https://doi.org/10.1016/j.cap.2015.03.026.

    Article  Google Scholar 

  42. A. Santhoshkumar, H. P. Kavitha, and R. Suresh (2016). Karbala Int. J. Mod. Sci. 2, (3), 196–202. https://doi.org/10.1016/j.kijoms.2016.06.001.

    Article  Google Scholar 

  43. M. Hartmann, M. Berditsch, J. Hawecker, M. F. Ardakani, D. Gerthsen, and A. S. Ulrich (2010). Antimicrob. Agents Chemother. 54, (8), 3132–3142. https://doi.org/10.1128/AAC.00124-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. N. Oroujzadeh, E. Delpazir, and Z. Shariatinia (2019). Part. Sci. Technol. 37, (4), 423–429. https://doi.org/10.1080/02726351.2017.1386250.

    Article  CAS  Google Scholar 

  45. L. Zhang, et al. (2010). J. Nanopart. Res. 12, (5), 1625–1636. https://doi.org/10.1007/s11051-009-9711-1.

    Article  CAS  Google Scholar 

  46. E. V. Dubrovin, et al. (2008). Langmuir ACS J. Surf. Colloids 24, (22), 13068–13074. https://doi.org/10.1021/la8022612.

    Article  CAS  Google Scholar 

  47. S. Zoha, et al. (2020). J. Photochem. Photobiol. Chem.. https://doi.org/10.1016/j.jphotochem.2020.112472.

    Article  Google Scholar 

  48. G. Sampath, D. J. H. Shyu, N. Rameshkumar, M. Krishnan, P. Sivasankar, and N. Kayalvizhi (2020). J. Clust. Sci.. https://doi.org/10.1007/s10876-020-01813-8.

    Article  Google Scholar 

  49. H. Huang, et al. (2016). Sci. Rep.. https://doi.org/10.1038/srep25518.

    Article  PubMed  PubMed Central  Google Scholar 

  50. S. Krajewski, et al. (2013). Acta Biomater. 9, (7), 7460–7468. https://doi.org/10.1016/j.actbio.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  51. D. Pan, et al. (2016). PLOS ONE 11, (3), e0152074. https://doi.org/10.1371/journal.pone.0152074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O. Gennari, et al. (2018). ACS Appl. Mater. Interfaces 10, (18), 15467–15476. https://doi.org/10.1021/acsami.8b02815.

    Article  CAS  PubMed  Google Scholar 

  53. A. Sinha, T. T. T. Chu, M. Dao, and R. Chandramohanadas (2015). Sci. Rep. 5, 9768. https://doi.org/10.1038/srep09768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sajid Butt or Muhammad Abdul Basit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qazi, A., Nazir, M., Shahid, M. et al. Facile Development of Hybrid Bulk-Nanostructured SnSe/SnS for Antibacterial Activity with Negligible Cytotoxicity. J Clust Sci 32, 665–672 (2021). https://doi.org/10.1007/s10876-020-01824-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01824-5

Keywords

Navigation