Skip to main content
Log in

A New Anionic Structure Type Of Chlorobismuthate Salt: X-ray Characterization, DFT, Optical and Dielectric Properties of (C4H10N)8[Bi2Cl11][BiCl6]·2H2O

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, attributed to their excellent anionic structure diversity, halogenobismuthate(III) materials have been a popular research direction. Apart from their interesting structural motifs, such hybrids often demonstrate potentially valuable properties such as luminescence and optoelectronics. Herein, we report the study of the first chlorobismuthate(III) hybrid compound involving discrete binuclear Bi2Cl11 and mononuclear BiCl6 anions coexisting together in the same structure. The anionic framework is connected to water molecules by O–H···Cl hydrogen bonds to build a corrugate chain spreading in the (111) direction. The intermolecular interactions were examined using Hirshfeld surfaces. The vibrational properties were investigated using the IR absorption spectroscopy. The optical study revealed the absorption and photoluminescence properties of the compound. Theoretical investigations were undertaken by means of DFT and TDDFT calculations on a suitably chosen cluster. A good agreement was found between calculations and experimental results leading to consistent vibrational and optical features assignments. The thermal behaviour was discussed. The variation of the dielectric loss log(ɛ″) with log(ω) was found to follow the empirical law, ɛ″ = Bωm(T). The dependence of the exponent m(T) on temperature, suggested that the correlated barrier hopping “CBH” and the non-overlapping small polaron tunneling “NSPT” are the appropriate models for the conduction mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhao, Q. Han, J. Zhu, X. Wu, and X. Wang (2014). Nanoscale 6, 10062–10070.

    Article  CAS  PubMed  Google Scholar 

  2. M. Khazaee, K. Sardashti, J. P. Sun, H. Zhou, C. Clegg, I. G. Hill, J. L. Jones, D. C. Lupascu, and D. B. Mitzi (2018). Chem. Mater. 30, 3538–3544.

    Article  CAS  Google Scholar 

  3. L. C. Lee, T. N. Huq, J. L. MacManus-Driscoll, and R. L. Z. Hoye (2018). Apl. Mater. 6, 084502.

    Article  CAS  Google Scholar 

  4. Y.-K. Wang, Y.-L. Wu, X.-Y. Lin, D.-H. Wang, W.-T. Zhang, K.-Y. Song, H.-H. Li, and Z.-R. Chen (2018). J. Mol. Struct. 1151, 81–87.

    Article  CAS  Google Scholar 

  5. V. V. Atuchin, V. A. Golyashov, K. A. Kokh, I. V. Korolkov, A. S. Kozhukhov, V. N. Kruchini, S. V. Makarenko, L. D. Pokrovsky, I. P. Prosvirin, K. N. Romanyuk, and O. E. Tereshchenko (2011). Cryst Growth Des. 11, 5507–5514.

    Article  CAS  Google Scholar 

  6. A. A. Savina, V. V. Atuchin, S. F. Solodovnikov, Z. A. Solodovnikova, A. S. Krylov, E. A. Maximovskiy, M. S. Molokeev, A. S. Oreshonkov, A. M. Pugachev, and E. G. Khaikina (2015). J. Solid State Chem. 225, 53–58.

    Article  CAS  Google Scholar 

  7. V. V. Atuchin, T. A. Gavrilova, K. A. Kokh, N. V. Kuratieva, N. V. Pervukhina, N. V. Surovtsev, and O. E. Tereshchenko (2019). Mater. Res. Express 6, 045912.

    Article  CAS  Google Scholar 

  8. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2016). Coord. Chem. Rev. 312, 1–21.

    Article  CAS  Google Scholar 

  9. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2017). Russ. J. Inorg. Chem. 62, 1789–1796.

    Article  CAS  Google Scholar 

  10. S. A. Adonin, M. N. Sokolov, and V. P. Fedin (2019). J. Struct. Chem. 60, 1655–1659.

    Article  CAS  Google Scholar 

  11. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, O. V. Antonova, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin (2018). Inorg. Chim. Acta. 469, 32–37.

    Article  CAS  Google Scholar 

  12. I. D. Gorokh, S. A. Adonin, A. S. Novikov, A. N. Usoltsev, P. E. Plyusnin, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin (2019). Polyhedron. 166, 137–140.

    Article  CAS  Google Scholar 

  13. I. D. Gorokh, S. A. Adonin, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin (2018). Russ. J. Coord. Chem. 44, 502–506.

    Article  CAS  Google Scholar 

  14. S. A. Adonin, I. D. Gorokh, A. S. Novikov, D. G. Samsonenko, I. V. Korolkov, M. N. Sokolov, and V. P. Fedin (2018). Polyhedron. 139, 282–288.

    Article  CAS  Google Scholar 

  15. S. A. Adonin, M. E. Rakhmanova, D. G. Samsonenko, M. N. Sokolov, and V. P. Fedin (2016). Inorg. Chim. Acta. 450, 232–235.

    Article  CAS  Google Scholar 

  16. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, I. V. Korol`kov, M. N. Sokolov, and V. P. Fedin (2017). J. Struct. Chem. 58, 718–723.

    Article  CAS  Google Scholar 

  17. S. A. Adonin, I. D. Gorokh, D. G. Samsonenko, I. V. Yushina, M. N. Sokolova, and V. P. Fedin (2016). Russ. J. Coord. Chem. 42, 695–700.

    Article  CAS  Google Scholar 

  18. M. Moskwa, G. Bator, M. Rok, W. Medycki, A. Miniewicz, and R. Jakubas (2018). Dalton Trans. 47, 13507–13522.

    Article  CAS  PubMed  Google Scholar 

  19. M. Moskwa, G. Bator, A. Piecha-Bisiorek, R. Jakubas, W. Medycki, A. Cizman, and J. Baran (2018). Mater. Res. Bull. 104, 202–211.

    Article  CAS  Google Scholar 

  20. A. Kallel and J. W. Bats (1985). Acta Crystallogr. C 41, 1022.

    Article  Google Scholar 

  21. J. Zaleski, C. Z. Pawlaczyk, R. Jakubas, and H.-G. Unruh (2000). J. Phys. Condens. Matter. 12, 7509–7521.

    Article  CAS  Google Scholar 

  22. M. Bujak and J. Zaleski (2001). Cryst. Eng. 4, 241–252.

    Article  CAS  Google Scholar 

  23. M. Wojciechowska, A. Gągor, A. Piecha-Bisiorek, R. Jakubas, A. Ciżman, J. K. Zaręba, M. Nyk, P. Zieliński, W. Medycki, and A. Bil (2018). Chem. Mater. 30, 4597–4608.

    Article  CAS  Google Scholar 

  24. Z. Sun, A. Zeb, S. Liu, C. Ji, T. Khan, L. Li, M. Hong, and J. Luo (2016). Angew. Chem. Int. Ed. 55, 11854–11858.

    Article  CAS  Google Scholar 

  25. W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, and C. Pasquier (2009). Chem. Mater. 21, 4099–4101.

    Article  CAS  Google Scholar 

  26. A. Piecha, A. Białońska, and R. Jakubas (2012). J. Mater. Chem. 22, 333–336.

    Article  CAS  Google Scholar 

  27. P. Carpentier, J. Lefebvre, and R. Jakubas (1995). Acta Crystllogr. B51, 167–174.

    Article  Google Scholar 

  28. P. Carpentier, P. Zielinski, J. Lefebvre, and R. Jakubas (1997). J. Phys. B Condens. Matter. 102, 403–414.

    Article  CAS  Google Scholar 

  29. R. Jakubas, A. Piecha, A. Pietraszko, and G. Bator (2005). Phys. Rev. B 72, 104107–104114.

    Article  CAS  Google Scholar 

  30. A. Piecha, A. Pietraszko, G. Bator, and R. Jakubas (2008). J. Solid State Chem. 118, 1155–1166.

    Article  CAS  Google Scholar 

  31. R. Jakubas, G. Bator, and Z. Ciunik (2003). Phys. Rev. B 64, 024103.

    Article  CAS  Google Scholar 

  32. G. Xu, L. Yan, W.-W. Zhou, G.-J. Wang, X.-F. Long, L.-Z. Cai, M.-S. Wang, G.-C. Guo, J.-S. Huang, G. Bator, and R. Jakubas (2009). J. Mater. Chem. 19, 2179–2183.

    Article  CAS  Google Scholar 

  33. Y.-J. Wang and L. Xu (2008). J. Mol. Struct. 875, 570–576.

    Article  CAS  Google Scholar 

  34. B. Kulicka, T. Lis, V. Kinzhybalo, R. Jakubas, and A. Piecha (2010). Polyhedron 29, 2014–2022.

    Article  CAS  Google Scholar 

  35. Y. Zhang, W. Liao, D. Fu, H. Ye, Z. Chen, and R. Xiong (2015). J. Am. Chem. Soc. 137, 4928–4931.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Zhang, W. Liao, D. Fu, H. Ye, C. Liu, Z. Chen, and R. Xiong (2015). Adv. Mater. 27, 3942–3946.

    Article  CAS  PubMed  Google Scholar 

  37. G. M. Sheldrick (2015). Acta Cryst. A71, 3–8.

    Google Scholar 

  38. G. M. Sheldrick (2015). Acta Cryst. C71, 3–8.

    Google Scholar 

  39. M. Nardelli (1999). J. Appl. Cryst. 32, 563–571.

    Article  CAS  Google Scholar 

  40. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman CrystalExplorer (University of Western Australia, Perth, 2012).

    Google Scholar 

  41. R. Dennington, T. Keith, and J. Millam GaussView, Version 5, Semichem Inc (Shawnee, Mission, 2009).

    Google Scholar 

  42. S. V. Krivovichev, I. G. Tananaev, V. Kahlenberg, and B. F. Myasoedov (2006). Radiochemistry. 48, 213–216.

    Article  CAS  Google Scholar 

  43. X. Wang and F. Liebau (1996). Acta Crystallogr. B 52, 7–15.

    Article  Google Scholar 

  44. N. Elfaleh, H. Chouaib, and S. Kamoun (2013). Acta Crystallogr. E69, m666.

    Google Scholar 

  45. A. S. Rao, U. Baruah, and S. K. Das (2011). J. Inorg. Chem. Acta 372, 206–212.

    Article  CAS  Google Scholar 

  46. A. Samet, H. Boughzala, H. Khemakhem, and Y. Abid (2010). J. Mol. Struct. 984, 23–29.

    Article  CAS  Google Scholar 

  47. L. Pauling The nature of the chemical bond (Cornell University Press, Ithaca, 1960), p. 260.

    Google Scholar 

  48. D. Cremer and J. A. Pople (1975). J. Am. Chem. Soc. 97, 1354–1358.

    Article  CAS  Google Scholar 

  49. H. Giglmeier, T. Kerscher, P. Klüfersa, and P. Mayer (2009). Acta Cryst. E 65, o592.

    Article  CAS  Google Scholar 

  50. K. Gotoh and H. Ishida (2018). IUCrDATA. 3, x181397.

    Article  CAS  Google Scholar 

  51. H. Khanam, A. Mashrai, N. Siddiqui, M. Ahmad, M. J. Alam, and S. Ahmed (2015). J. Mol. Struct. 1084, 274–283.

    Article  CAS  Google Scholar 

  52. C. Jelsch and S. Soudania (2015). C. Ben Nasr. IUCrJ. 2, 327–340.

    Article  CAS  Google Scholar 

  53. H.-Y. Ye, Q.-H. Zhou, X.-H. Niu, W.-Q. Liao, D.-W. Fu, Y. Zhang, Y.-M. You, J. Wang, Z.-N. Chen, and R.-G. Xiong (2015). J. Am. Chem. Soc. 137, 13148–13154.

    Article  CAS  PubMed  Google Scholar 

  54. S. F. Hoefler, T. Rath, R. Fischer, C. Latal, D. Hippler, A. Koliogiorgos, I. Galanakis, A. Bruno, A. Fian, T. Dimopoulos, and G. Trimmel (2018). Inorg. Chem. 57, 10576–10586.

    Article  CAS  PubMed  Google Scholar 

  55. A. Piecha-Bisiorek, A. Gągor, R. Jakubas, A. Ciżman, R. Janickia, and W. Medycki (2017). Inorg. Chem. Front. 4, 1281–1286.

    Article  CAS  Google Scholar 

  56. A. García-Fernandez, I. Marcos-Cives, C. Platas-Iglesias, S. Castro-García, D. Vazquez-García, A. I. Fernandez, and M. Sanchez-Andujar (2018). Inorg. Chem. 57, 7655–7664.

    Article  PubMed  CAS  Google Scholar 

  57. Z. Ouerghi, T. Roisnel, R. Fezai, and R. Kefi (2018). J. Mol. Struct. 1173, 439–447.

    Article  CAS  Google Scholar 

  58. F. Wei, Z. Deng, S. Sun, F. Xie, G. Kieslich, D. M. Evans, M. A. Carpenter, P. D. Bristowea, and A. K. Cheetham (2016). Mater. Horiz. 3, 328–332.

    Article  CAS  Google Scholar 

  59. R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, R. C. Kurchin, J. R. Poindexter, E. N. Wang, M. G. Bawendi, V. Bulovic, and T. Buonassisi (2016). Chem. Eur. J. 22, 2605–2610.

    Article  CAS  PubMed  Google Scholar 

  60. C. Hrizi, A. Samet, Y. Abid, S. Chaabouni, M. Fliyou, and A. Koumina (2011). J. Mol. Struct. 992, 96–101.

    Article  CAS  Google Scholar 

  61. D.-W. Zhang, W.-T. Chen, and Y.-F. Wang (2017). Luminescence 32, 201–205.

    Article  CAS  PubMed  Google Scholar 

  62. H. Dammak, S. Triki, A. Mlayah, Y. Abid, and H. Feki (2015). J. Lumin. 166, 180–186.

    Article  CAS  Google Scholar 

  63. S. Trabelsie, A. Samet, H. Dammak, F. Michaud, L. Santos, Y. Abid, and S. Chaabouni (2019). Opt. Mater. 89, 355–360.

    Article  CAS  Google Scholar 

  64. S. Lai, Z. Yang, R. Wang, H. Wu, J. Liao, J. Qiu, Z. Song, Y. Yang, and D. Zhou (2013). J. Mater. Sci. 48, 8566–8570.

    Article  CAS  Google Scholar 

  65. R. Cao, G. Quan, Z. Shi, Q. Gou, T. Chen, Z. Hu, and Z. Luo (2018). J. Mater. Sci. Mater. Electron. 29, 5287–5292.

    Article  CAS  Google Scholar 

  66. Z. Ouerghi, H. Gornitzka, E. Temel, I. Dridi, and R. Kefi (2019). J. Mol. Struct. 1181, 338–347.

    Article  CAS  Google Scholar 

  67. M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, and A. Ben Rhaiem (2014). J. Alloys compd. 588, 551–557.

    Article  CAS  Google Scholar 

  68. N. Karâa, B. Hamdi, A. Ben Salah, and R. Zouari (2012). J. Mol. Struct. 1013, 168–176.

    Article  CAS  Google Scholar 

  69. B. Roling, A. Happe, K. Funke, and M. D. Ingram (1997). Phys. Rev. Lett. 78, 2160–2163.

    Article  CAS  Google Scholar 

  70. A. K. Jonscher, K. L. Deori, J. M. Reau, and J. Moali (1979). J. Mater. Sci. 14, 1308–1320.

    Article  CAS  Google Scholar 

  71. A. Daidouh, M. L. Veiga, and C. Pico (1997). Solid State Ion. 104, 285–294.

    Article  CAS  Google Scholar 

  72. J. C. Giuntini and J. V. Zanchette (1981). J. Non-Cryst. Solids. 45, 57–62.

    Article  CAS  Google Scholar 

  73. A. Ghosh and A. Pan (2000). Phys. Rev. Lett. 84, 2188–2190.

    Article  CAS  PubMed  Google Scholar 

  74. T. B. Schroder and J. C. Dyre (2000). Phys. Rev. Lett. 84, 310–313.

    Article  CAS  PubMed  Google Scholar 

  75. M. A. M. Seyam (2001). Appl. Surf. Sci. 181, 128–138.

    Article  CAS  Google Scholar 

  76. A. Ghosh (1990). Phys. Rev. B 41, 1479–1488.

    Article  CAS  Google Scholar 

  77. M. Pollak (1971). Phil. Mag. 23, 519–543.

    Article  CAS  Google Scholar 

  78. S. Mollah, K. K. Som, K. Bose, and B. K. Chaudri (1993). J. Appl. Phys. 74, 931–937.

    Article  CAS  Google Scholar 

  79. M. Megdiche, C. Perrin-pellegrino, and M. Gargouri (2014). J. Alloys compd. 584, 209–215.

    Article  CAS  Google Scholar 

  80. A. Ghosh (1990). Phys. Rev. B 42, 5665–5676.

    Article  CAS  Google Scholar 

  81. R. Kohlrausch (1854). Pogg. Ann. Phys. Chem. 91, 179–214.

    Article  Google Scholar 

  82. G. Williams and D. C. Watts (1970). Trans. Faraday Soc. 66, 80–85.

    Article  CAS  Google Scholar 

  83. F. Borsa, D. R. Torgeson, S. W. Martin, and H. K. Patel (1992). Phys. Rev. B 46, 795–800.

    Article  CAS  Google Scholar 

  84. S. R. Elliot (1987). Adv. Phys. 36, 135–217.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian National Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riadh Kefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerghi, Z., Fersi, M.A., Elleuch, S. et al. A New Anionic Structure Type Of Chlorobismuthate Salt: X-ray Characterization, DFT, Optical and Dielectric Properties of (C4H10N)8[Bi2Cl11][BiCl6]·2H2O. J Clust Sci 32, 179–191 (2021). https://doi.org/10.1007/s10876-020-01776-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01776-w

Keywords

Navigation