Skip to main content
Log in

Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, the electronic excited states of hypoxanthine in solution such as water and acetonitrile are investigated by the time-dependent density functional theory (TDDFT) method. We demonstrated for the first time that the intermolecular excited-state electron transfer (ESET) from solvents to the hypoxanthine through excited-state intermolecular hydrogen-bonds cluster exhibits obvious site-selectivity. Excited-state electron transfer could only occur at the N7 site of hypoxanthine molecule in water solution, while that is the N9 site in acetonitrile. Potential energy surfaces for different electronic states of hypoxanthine with and without the influence of the excited-state hydrogen bonding cluster are also discussed. Site-selective ESET is proposed to induce the internal conversion of hypoxanthine from S2 state to S1 at a conical intersection, which is responsible for the ultrashort lifetime of hypoxanthine in excited state in solution. These results pave a novel way to understand the photophysical and photochemical behaviors of DNA bases and their derivatives in solution phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Yoshihara (1999). Adv. Chem. Phys. 107, 371–402.

    CAS  Google Scholar 

  2. T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz, and K. Yoshihara (1991). Chem. Phys. Lett. 180, 416–422.

    Article  CAS  Google Scholar 

  3. Y. Nagasawa, A. P. Yartsev, K. Tominaga, A. E. Johnson, and K. Yoshihara (1993). J. Am. Chem. Soc. 115, 7922–7923.

    Article  CAS  Google Scholar 

  4. M. D. Ward (1997). Chem. Soc. Rev. 26, 365–375.

    Article  CAS  Google Scholar 

  5. P. Piotrowiak (1999). Chem. Soc. Rev. 28, 143–150.

    Article  CAS  Google Scholar 

  6. M. C. Jimenez, M. A. Miranda, and R. Tormos (2005). Chem. Soc. Rev. 34, 783–796.

    Article  CAS  PubMed  Google Scholar 

  7. A. C. Benniston and A. Harriman (2006). Chem. Soc. Rev. 35, 169–179.

    Article  CAS  PubMed  Google Scholar 

  8. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940–8945.

    Article  CAS  PubMed  Google Scholar 

  9. H. B. Yang, N. Das, F. Huang, A. M. Hawkridge, D. D. Díaz, A. M. Arif, M. G. Finn, D. C. Muddiman, and P. J. Stang (2006). J. Am. Chem. Soc. 128, 10014–10015.

    Article  CAS  PubMed  Google Scholar 

  10. W. Domcke and A. L. Sobolewski (2003). Science 302, 1693–1694.

    Article  CAS  PubMed  Google Scholar 

  11. M. Ramegowda (2013). New J. Chem. 37, 2648–2653.

    Article  CAS  Google Scholar 

  12. Z. X. Huang, D. M. Ji, A. D. Xia, F. Koberling, M. Patting, and R. Erdmann (2005). J. Am. Chem. Soc. 127, 8064–8066.

    Article  CAS  PubMed  Google Scholar 

  13. W. Lv, N. Li, Y. L. Li, Y. Li, and A. D. Xia (2006). J. Am. Chem. Soc. 128, 10281–10287.

    Article  CAS  PubMed  Google Scholar 

  14. D. Aumiler, S. F. Wang, X. D. Chen, and A. D. Xia (2009). Am. Chem. Soc. 131, 5742.

    Article  CAS  Google Scholar 

  15. C. R. Waidmann, X. Zhou, E. A. Tsai, W. Kaminsky, D. A. Hrovat, W. T. Borden, and J. M. Mayer (2009). Am. Chem. Soc. 131, 4729–4743.

    Article  CAS  Google Scholar 

  16. P. Jaramillo, K. Coutinho, and S. Canuto (2009). J. Phys. Chem. A 113, 12485–12495.

    Article  CAS  PubMed  Google Scholar 

  17. S. Abbruzzetti, E. Grandi, C. Viappiani, S. Bologna, B. Campanini, S. Raboni, S. Bettati, and A. Mozzarelli (2005). J. Am. Chem. Soc. 127, 626–635.

    Article  CAS  PubMed  Google Scholar 

  18. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38–46.

    Article  CAS  PubMed  Google Scholar 

  19. L. Zhao, P. W. Zhou, and G. J. Zhao (2016). RSC Adv. 6, 64323–64331.

    Article  CAS  Google Scholar 

  20. C. E. Crespo-Hernandez, B. Cohen, P. M. Hare, and B. Kohler (2004). Chem. Rev. 104, 1977–2019.

    Article  CAS  PubMed  Google Scholar 

  21. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernandez, and B. Kohler (2009). Annu. Rev. Phys. Chem. 60, 217–239.

    Article  CAS  PubMed  Google Scholar 

  22. A. L. D. Sobolewski (2006). Europhys. News 37, 20–23.

    Article  CAS  Google Scholar 

  23. L. Zhao, P. Zhou, and G. Zhao (2016). J. Chem. Phys. 145, 044316.

    Article  PubMed  CAS  Google Scholar 

  24. C. Wang, Y. Liu, X. Feng, C. Y. Zhou, Y. L. Liu, and X. Yu (2019). Angew. Chem. Int. Ed. 58, (34), 11642–11646.

    Article  CAS  Google Scholar 

  25. M. L. Shukla and J. Leszczynski Radiation Induced Molecular Phenomena in Nucleic Acids (Springer, Berlin, 2008).

    Book  Google Scholar 

  26. A. Abo-Riziq, L. Grace, E. Nir, M. Kabelac, P. Hobza, and M. S. de Vries (2005). Natl. Acad. Sci. USA 102, 20–23.

    Article  CAS  Google Scholar 

  27. S. Yamazaki, A. L. Sobolewski, and W. Domcke (2009). Phys. Chem. Chem. Phys. 11, 10165–10174.

    Article  CAS  PubMed  Google Scholar 

  28. C. E. Crespo-Hernandez and B. Kohler (2004). J. Phys. Chem. B 108, 11182–11188.

    Article  CAS  Google Scholar 

  29. W. Domcke, D. Yarkony, and H. Köppel Conical Intersections: Electronic Structure, Dynamics and Spectroscopy, vol. 15 (World Scientific, Singapore, 2004), pp. 41–102.

    Book  Google Scholar 

  30. S. Perun, A. L. Sobolewski, and W. Domcke (2006). J. Phys. Chem. A 110, 9031–9038.

    Article  CAS  PubMed  Google Scholar 

  31. H. L. Barks, R. Buckley, G. A. Grieves, E. Di Mauro, N. V. Hud, and T. M. Orlando (2010). ChemBioChem 11, 1240–1243.

    Article  CAS  PubMed  Google Scholar 

  32. M. P. Callahan, K. E. Smith, H. J. Cleaves, J. Ruzicka, J. C. Stern, D. P. Glavin, C. H. House, and J. P. Dworkin (2011). Proc. Natl. Acad. Sci. USA 108, 13995–13998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. G. Wachtershauser (1988). Proc. Natl. Acad. Sci. USA 85, 1134–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R. J. Malone, A. M. Miller, and B. Kohler (2003). Photochem. Photobiol. 77, 158–164.

    Article  CAS  PubMed  Google Scholar 

  35. B. Cohen, P. M. Hare, and B. Kohler (2003). J. Am. Chem. Soc. 125, 13594–13601.

    Article  CAS  PubMed  Google Scholar 

  36. E. Mburu and S. Matsika (2008). J. Phys. Chem. A 112, 12485–12491.

    Article  CAS  PubMed  Google Scholar 

  37. M. P. Callahan, B. Crews, A. Abo-Riziq, L. Grace, M. S. de Vries, Z. Gengeliczki, T. M. Holmes, and G. A. Hill (2007). Phys. Chem. Chem. Phys. 9, 4587–4591.

    Article  CAS  PubMed  Google Scholar 

  38. M. Mons, F. Piuzzi, I. Dimicoli, L. Gorb, and J. Leszczynski (2006). J. Phys. Chem. A 110, 10921–10924.

    Article  CAS  PubMed  Google Scholar 

  39. K. Rottger, R. Siewertsen, and F. Temps (2012). Chem. Phys. Lett. 536, 140–146.

    Article  CAS  Google Scholar 

  40. J. P. Villabona-Monsalve, R. Noria, S. Matsika, and J. Peon (2012). J. Am. Chem. Soc. 134, 7820–7829.

    Article  CAS  PubMed  Google Scholar 

  41. J. W. Jones and R. K. Robins (1963). J. Am. Chem. Soc. 85, 193–201.

    Article  CAS  Google Scholar 

  42. Y. Nishimura, S. Takahashi, T. Yamamoto, M. Tsuboi, M. Hattori, K. Miura, K. Yamaguchi, S. Ohtani, and T. Hata (1980). Nucleic Acids Res. 8, 1107–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. Kulikowska, A. Bzowska, J. Wierzchowski, and D. Shugar (1986). Biochim. Biophys. Acta 874, 355–363.

    Article  CAS  PubMed  Google Scholar 

  44. V. Lemaur, M. Steel, D. Beljonne, J. L. Bredas, and J. Cornil (2005). J. Am. Chem. Soc. 127, 6077–6086.

    Article  CAS  PubMed  Google Scholar 

  45. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  46. A. D. Becke (1988). Phys. Rev. A 38, 3098–3100.

    Article  CAS  Google Scholar 

  47. C. T. Lee, W. T. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  48. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch (1994). J. Phys. Chem. 98, 11623–11627.

    Article  CAS  Google Scholar 

  49. A. V. Marenich, C. J. Cramer, and D. G. Truhlar (2009). J. Phys. Chem. B 113, 6378–6396.

    Article  CAS  PubMed  Google Scholar 

  50. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides (Gaussian Inc, Wallingford, 2010).

    Google Scholar 

  51. J. F. Gerster, R. K. Robins, and J. W. Jones (1963). J. Org. Chem. 28, 945.

    Article  CAS  Google Scholar 

  52. M. Leng, F. Pochon, and A. Michelso (1968). Biochim. Biophys. Acta 169, 338–349.

    Article  CAS  PubMed  Google Scholar 

  53. L. C. Zhou, G. J. Zhao, J. F. Liu, K. L. Han, Y. K. Wu, X. J. Peng, and M. T. Sun (2007). J. Photochem. Photobiol. A 187, 305–310.

    Article  CAS  Google Scholar 

  54. D. Sicinska, D. G. Truhlar, and P. Paneth (2005). J. Am. Chem. Soc. 127, 5414–5422.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21573229, 21873068 and 21422309). G.J.Z. also thanks the financial support from the Frontier Science Project of the Knowledge Innovation Program of Chinese Academy of Sciences (CAS), Project for Excellent Member of CAS Youth Innovation Promotion Association, the Open Research Funds of State Key Laboratory of Bioelectronics (Southeast University) and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences), and Double First-Rate Project of Tianjin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjiu Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Guo, Y., Feng, X. et al. Site-Selective Photoinduced Electron Transfer of Excited-State Intermolecular Hydrogen-Bonded Cluster in Solution. J Clust Sci 32, 93–99 (2021). https://doi.org/10.1007/s10876-020-01765-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01765-z

Keywords

Navigation