Skip to main content
Log in

Synthesis of Neogambogic Acid Mediated Reduced Graphene Oxide Nanosheets as Photothermal Radiotherapy Agents and Effect on Breast Cancer Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Owing to its effectiveness and security, photothermal therapy (PTT) has been recently established to be a promising cancer therapy after biological therapy, chemotherapy, radiotherapy and surgery. In this study, neogambogic acid reduced graphene oxide (NRGO) was prepared using a green and simple process. Which implies graphene oxide is reduced in situ and stabilized using neogambogic acid, a rich, cost efficient, sustainable biological material and all together forms NRGO. The resultant NRGO dissolves very well in water and displays effective biocompatibility because of the conjugation of neogambogic acid on the NRGO surface. This kind of NRGO’s exhibit excellent photothermal abilities and were capable to destroy breast cancer (MCF-7) cells effectively with near-infrared 808 nm laser irradiation. These outcomes recommend that this form of NRGO hybrid material can be an assuring resource for upcoming applications of PTT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. A. Barreto, W. O. Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia (2011). Adv. Mater.23, 18–H40.

    Article  Google Scholar 

  2. S. Shen, H. Tang, X. Zhang, J. Ren, Z. Pang, D. Wang, H. Gao, Y. Qian, X. Jiang, and W. Yang (2013). Biomaterials.34, 3150–3158.

    Article  CAS  Google Scholar 

  3. Y. Ni, C. X. Kan, B. Cong, J. S. Liu, and H. Y. Xu (2014). Adv. Mater. Res.906, 204–213.

    Article  Google Scholar 

  4. N. Sumimoto, K. Nakao, T. Yamamoto, K. Yasuda, S. Matsumura, and Y. Niidome (2014). Microscopy.63, 261–268.

    Article  CAS  Google Scholar 

  5. C. Ungureanu, R. Kroes, W. Petersen, T. A. Groothuis, F. Ungureanu, H. Janssen, F. W. van Leeuwen, R. P. Kooyman, S. Manohar, and T. G. van Leeuwen (2011). Nano Lett.11, 1887–1894.

    Article  CAS  Google Scholar 

  6. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome (2006). J. Controlled Release.114, 343–347.

    Article  CAS  Google Scholar 

  7. J. Wang, S. Su, J. Wei, R. Bahgi, L. Hope-Weeks, J. Qiu, and S. Wang (2015). Phys. E.72, 17–24.

    Article  CAS  Google Scholar 

  8. J. Wang, J. Wei, S. Su, and J. Qiu (2015). New J. Chem.39, 501–507.

    Article  CAS  Google Scholar 

  9. S. Su, S. Wang, and J. Qiu (2014). Sci. Adv. Mater.6, 203–208.

    Article  CAS  Google Scholar 

  10. C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci, and A. Khademhosseini (2013). ACS Nano.7, 2891–2897.

    Article  CAS  Google Scholar 

  11. J. Wang and J. Qiu (2014). Sci. Adv. Mater.6, 1–11.

    Article  Google Scholar 

  12. K. Yang, S. Zhang, G. Zhang, X. Sun, S. T. Lee, and Z. Liu (2010). Nano Lett.10, 3318–3323.

    Article  CAS  Google Scholar 

  13. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu (2012). Biomaterials.33, 2206–2214.

    Article  CAS  Google Scholar 

  14. K. Liu, J. J. Zhang, F. F. Cheng, T. T. Zheng, C. Wang, and J. J. Zhu (2011). J. Mater. Chem.21, 12034–12040.

    Article  CAS  Google Scholar 

  15. L. Wu, H. Chu, W. Koh, and E. Li (2010). Opt. Express.18, 14395–14400.

    Article  CAS  Google Scholar 

  16. O. N. Ruiz, K. S. Fernando, B. Wang, N. A. Brown, P. G. Luo, N. D. McNamara, M. Vangsness, Y. P. Sun, and C. E. Bunker (2011). ACS Nano.5, 8100–8107.

    Article  CAS  Google Scholar 

  17. K. Yang, J. Wan, S. Zhang, Y. Zhang, S. T. Lee, and Z. Liu (2010). ACS Nano.5, 516–522.

    Article  CAS  Google Scholar 

  18. N. Miyoshi, K. Katayama, I. Ogawa, T. Idehara, and T. Nagashima (2012). Application of Gyrotron for Hyperthermia of A Tumor Model and A Possibility of the Combination Therapy of Cancer with PDT.

  19. K. Ogawa, and Y. Kobuke (2013). BioMed Res. Int. Article ID 125658.

  20. M. Sireeshbabu and M. BadalKumar (2014). Int J. Nanosci. Tech.3, 2319–8796.

    Google Scholar 

  21. M. Sireesh babu, M. Badal Kumar, V. Raviraj, K. Poliraju, T. Sai Kumar, and H. A. Kiran Kumar (2014). Spectrochim. Acta Mol. Biomol. Spectrosc.126, 227–231.

    Article  Google Scholar 

  22. M. Sireesh babu, M. Badal Kumar, and F. Nawaz Khan (2017). Environ. Chem. Let.15, 467–474.

    Article  Google Scholar 

  23. M. Sireesh babu, M. Badal Kumar, V. Raviraj, K. Poliraju, and P. Sreedhara reddy (2015). Acta Mol. Biomol. Spectrosc.145, 117–124.

    Article  Google Scholar 

  24. M. Sireesh babu and M. Badal Kumar (2016). Current Nanosci.12, 94–102.

    Google Scholar 

  25. M. Sireesh babu, M. Badal Kumar, P. Sagar Hindurao, A. Vaibhav Vilas, R. Shivendu, and D. Nandita (2017). J. Photochem. Photobiol. B.116, 252–258.

    Google Scholar 

  26. M. Sireesh babu, M. Badal Kumar, R. Shivendu, and D. Nandita (2015). RSC Adv.5, 26727–26733.

    Article  Google Scholar 

  27. Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma, and L. Cai (2013). Biomaterials.34, 5236–5243.

    Article  CAS  Google Scholar 

  28. X. Jiang, Z. Li, J. Yao, Z. Shao, and X. Chen (2016). Mater. Sci. Eng. C.68, 798–804.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Weifang People’s Hospital for providing platform to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqin Jiang.

Ethics declarations

Conflict of interest

All authors declare that he/she has no conflict of interest found related to this work.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, X., Zhang, Z. et al. Synthesis of Neogambogic Acid Mediated Reduced Graphene Oxide Nanosheets as Photothermal Radiotherapy Agents and Effect on Breast Cancer Cells. J Clust Sci 31, 1097–1102 (2020). https://doi.org/10.1007/s10876-019-01717-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01717-2

Keywords

Navigation