Skip to main content
Log in

Bioactive and Biocompatible Nature of Green Synthesized Zinc Oxide Nanoparticles from Simarouba glauca DC.: An Endemic Plant to Western Ghats, India

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc-oxide nanoparticles (ZnO-NPs) synthesized from plant extracts are considered to possess superior biological activities compared to chemically synthesized nanoparticles and are of immediate interest to pharmaceutical and agriculture industries. The current study reports the green synthesis of ZnO-NPs from the aqueous leaf extract of Simarouba glauca for the first time. The physico-chemical characterization revealed hexagonal shaped nanoparticles with a size of ~ 17 to 37 nm calculated by Scherrer’s formula with a purity of 98.51%. The FT-IR results confirmed that functional groups present in the plant extract had coagulated well to form a metal oxide during the synthesis process. The antioxidant potential of green synthesized ZnO-NPs evaluated by different methods revealed significant (p ≤ 0.05) radical scavenging activity (5% to 59%) with IC50 value falling between 400 and 500 µg mL−1 among the test methods. The green synthesized nanoparticles also inhibited the mitotic cell division up to 17.46% with increase in concentration. Further, the haemolytic assay by spectroscopic analysis affirmed the biocompatible nature of the nanoparticles which was also evidenced through SEM studies. The present findings indicate that the green synthesized ZnO-NPs from S. glauca possess antioxidant and antimitotic properties apart from possessing biocompatible nature to RBCs thereby warranting in vivo studies.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Fakruddin, Z. Hossain, and H. Afroz (2012). J. Nanobiotechnol.10, 31.

    Article  Google Scholar 

  2. M. Murali, C. Mahendra, Nagabhushan, N. Rajashekar, M. S. Sudarshana, K. A. Raveesha and K. N. Amruthesh (2017). Spectrochim Acta A Mol. Biomol. Spectrosc.15, 104.

    Article  CAS  Google Scholar 

  3. P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanoparticles Res.10, 507.

    Article  CAS  Google Scholar 

  4. X. Li, H. Xu, Z. Chen, and G. Chen (2011). J. Nanomaterials, 2011, 270974.

    Google Scholar 

  5. D. Suresh, R. M. Shobharani, P. C. Nethravathi, M. A. Pavan-Kumar, H. Nagabhushana, and S. C. Sharma (2015). Spectrochim Acta A Mol. Biomol. Spectrosc.141, 128.

    Article  CAS  PubMed  Google Scholar 

  6. S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Prog Nat Sci Mater Int.22, 693.

    Article  Google Scholar 

  7. M. Stan, A. Popa, D. Toloman, T. D. Silipas, and D. C. Vodnar (2016). Acta. Metal. Sin.29, 228.

    Article  CAS  Google Scholar 

  8. D. Sharma, M. I. Sabela, S. Kanchi, P. S. Mdluli, G. Singh, T. A. Stenstrom, and K. Bisetty (2016). J. Photochem. Photobiol. B: Biol. B.162, 199.

    Article  CAS  Google Scholar 

  9. K. Nithya and S. Kalyanasundharam (2019). OpenNano.1, 100024.

    Article  Google Scholar 

  10. A. Happy, M. Soumya, S. V. Kumar, S. Rajeshkumar, R. D. Sheba, T. Lakshmi, and V. D. Nallaswamy (2019). Biochem. Biophy. Rep.1, 208.

    Google Scholar 

  11. S. Fakhari, M. Jamzad, and H. Kabiri Fard (2019). Green Chem. Lett. Rev.2, 19.

    Article  CAS  Google Scholar 

  12. P. S. Mansi and D. K. Gaikwad (2011). J. Pharm. Sci. Res.3, 1195.

    Google Scholar 

  13. K. Ashwani, T. Gaurav, S. Sunayana, V. Kumar, and R. Pundir (2014). Int. J. Pharmacognosy1, 735.

    Google Scholar 

  14. J. S. Gamble Flora of the Presidency of Madras, vol. 3 (BSI, Calcutta, 1935).

    Google Scholar 

  15. A. Serpen, E. Capuano, V. Fogliano, and V. Gokmen (2007). J. Agri. Food Chem.55, 7676.

    Article  CAS  Google Scholar 

  16. E. A. Shalaby and S. M. M. Shanab (2013). Indian J. Geo-Mar Sci.42, 556.

    Google Scholar 

  17. R. J. Ruch, S. J. Cheng, and E. Klaunig (1989). Carcinogenesis10, 1003.

    Article  CAS  PubMed  Google Scholar 

  18. M. Nishikimi, N. A. Rao, and K. Yagi (1972). Biochem. Biophys. Res. Commun.46, 849.

    Article  CAS  PubMed  Google Scholar 

  19. G. Fiskesjo (1985). Hereditas102, 99.

    Article  CAS  PubMed  Google Scholar 

  20. T. V. Surendra, S. M. Roopan, N. A. Al-Dhabi, M. V. Arasu, G. Sarkar, and K. Suthindhiran (2016). Nanoscale Res. Lett.11, 546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Kalita, R. Kandimalla, B. Devi, B. Kalita, K. Kalita, M. Deka, A. C. Kataki, A. Sharma, and J. Kotoky (2017). RSC Adv.7, 1749.

    Article  CAS  Google Scholar 

  22. S. Passi, O. De Pita, P. Puddu, and G. P. Littarru (2002). Free Radic. Res.36, 477.

    Article  CAS  Google Scholar 

  23. B. Auffray (2007). Int. J. Cosmet. Sci.29, 29.

    Article  Google Scholar 

  24. L. Medina-Ramirez, S. Bashir, Z. Luo, and J. L. Liu (2009). Colloids Surf. B.73, 185.

    Article  CAS  Google Scholar 

  25. A. K. Jha and K. Prasad (2010). Int. J. Green Nanotechnol. Phys. Chem.1, 110.

    Article  Google Scholar 

  26. R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan, and S. I. Hong (2014). Mater. Lett.1, 170.

    Article  CAS  Google Scholar 

  27. T. Karnanm and S. A. Selvakumar (2016). J. Mol. Struct.5, 358.

    Article  CAS  Google Scholar 

  28. S. Jafarirad, M. Mehrabi, B. Divband, and M. Kosari-Nasab (2016). Mater. Sci. Eng. C.59, 296.

    Article  CAS  Google Scholar 

  29. Y. H. Ni, X. W. Wei, J. M. Hong, and Y. Ye (2005). Mater. Sci. Eng. B.151, 42.

    Article  CAS  Google Scholar 

  30. R. Seshadri, in: Rao A CNR, Muller AK Cheetham (eds.), The Chemistry of Nanomaterials, vol 1, (Wiley-VCH Verlag GmbH, Weinheim 2004), p. 94.

  31. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamed (2015). Nano-Micro Lett.7, 219.

    Article  CAS  Google Scholar 

  32. T. R. Lakshmeesha, M. K. Sateesh, B. D. Prasad, S. C. Sharma, D. Kavyashree, M. Chandrashekar, and H. Nagabushana (2014). Cryst. Growth Des.14, 4068.

    Article  CAS  Google Scholar 

  33. C. Mahendra, M. Murali, G. Manasa, P. Ponnamma, M. R. Abhilash, T. R. Lakshmeesha, A. Satish, K. N. Amruthesh, and M. S. Sudarshana (2017). Microbial Pathogenesis.110, 620.

    Article  CAS  PubMed  Google Scholar 

  34. H. Sawada, R. Wang, and A. W. Sleight (1996). J. Solid. State Chem.122, 150.

    Article  Google Scholar 

  35. S. R. Senthilkumar and T. Sivakumar (2015). Int. J. Pharm. Sci.6, 461.

    Google Scholar 

  36. V. Lobo, A. Patil, A. Phatak, and N. Chandra (2010). Pharmacognosy Rev.4, 118.

    Article  CAS  Google Scholar 

  37. A. Thenmozhi, A. Nagalakshmi, and U. Mahadeva Rao (2011). Int. J. Sci. Technol1, 26–47.

    Google Scholar 

  38. N. H. Kumar, J. D. Andia, S. Manjunatha, M. Murali, K. N. Amruthesh, and S. Jagannath (2018). Biocatal. Agricult. Biotechnol.1, 101024.

    Google Scholar 

  39. S. Ananda Soubhagya (2014). Am. Chem. Sci. J.4, 616.

    Article  Google Scholar 

  40. T. C. Taranath, B. N. Patil, T. U. Santosh, and B. S. Sharath (2015). Env. Sci. Pol. Res.22, 8611.

    Article  CAS  Google Scholar 

  41. D. Pan, O. Vargas-Morales, B. Zern, A. C. Anselmo, V. Gupta, M. Zakrewsky, S. Mitragotri, and V. Muzykantov (2016). PloS ONE11, 0152074.

    Google Scholar 

  42. J. Autian in R. Kronenthal (ed.), Polymers in Medicine and Surgery, vol. 8 (Springer, New York, 1975), pp. 181–203.

    Chapter  Google Scholar 

  43. E. P. Babu, A. Subastri, A. Suyavaran, K. Premkumar, V. Sujatha, B. Aristatile, G. M. Alshammari, V. Dharuman, and C. Thirunavukkarasu (2017). Sci. Rep.7, 4203.

    Article  CAS  Google Scholar 

  44. D. Das, B. C. Nath, P. Phukon, and S. K. Dolui (2013). Colloids Surf. B.111, 556–560.

    Article  CAS  Google Scholar 

  45. G. K. Prashanth, P. A. Prashanth, B. M. Nagabhushana, S. Ananda, H. G. Nagendra, and C. Rajendra Singh (2016). Adv. Sci. Eng. Med.8, 306–313.

    Article  CAS  Google Scholar 

  46. M. A. Dobrovolskaia, J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, and S. E. McNeil (2008). Nano Lett.8, 2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author M. Murali would like to acknowledge the University Grants Commission (UGC)- New Delhi, India for providing the financial support under UGC Post-Doctoral Fellowship (No. F/PDFSS-2015-17-KAR-11846). The authors are also thankful to University with Potential for Excellence (UPE) Project authorities and Department of Studies in Botany, University of Mysore for providing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Amruthesh or Shobha Jagannath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemanth Kumar, N.K., Murali, M., Satish, A. et al. Bioactive and Biocompatible Nature of Green Synthesized Zinc Oxide Nanoparticles from Simarouba glauca DC.: An Endemic Plant to Western Ghats, India. J Clust Sci 31, 523–534 (2020). https://doi.org/10.1007/s10876-019-01669-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01669-7

Keywords

Navigation