Skip to main content
Log in

Multi-Functional Biological Effects of Palladium Nanoparticles Synthesized Using Agaricus bisporus

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study deals with the biosynthesis of palladium nanoparticles (PdNPs) using Agaricus bisporus and exploring its potential biological applications. The synthesized PdNPs were characterized by UV–visible, FTIR and XRD techniques. Microscopic analyses revealed the triangular (SEM and AFM) and spherical (TEM) morphologies of the nanoparticles with nanosize dimension ranging from 13 to 18 nm. The surface charge of the PdNPs were identified with the help of zeta potential and found to be negatively charged (− 24.3 mV). The PdNPs exhibited good antioxidant effect against DPPH free radicals with maximum radical scavenging activity of 77% using 50 μg/ml. FTIR spectra of the final DPPH solution depicted sharp intense signals at 1018 cm−1 (polysaccharides) and 3342 cm−1 (phenolic acids) evidencing the role of these bio functional groups in neutralizing the free radicals. Antibacterial assay revealed that PdNPs exhibited enhanced growth inhibition effect against gram positive bacteria (S. auerus; S. pyrogens; B. subtilis) than gram negative bacterial pathogens (E. aerogenes; K. pneumoniae; P. vulgaris). Anti-inflammatory activity performed with RBC cells showing 87% of activity for biosynthesized PdNPs. MTT assay demonstrated that PdNPs exhibited excellent cytotoxic effect against PK13 cell lines. Maximum growth inhibition of 79% was observed for the maximum dose (50 µg/ml) with IC50 value of 26.1 µg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Dhanasekaran, S. Latha, S. Saha, N. Thajuddin, and A. Panneerselvam (2013). J. Exp. Nanosci.8, 579.

    Article  CAS  Google Scholar 

  2. D. Watanabe, M. N. Nilius, and H. J. Freund (2006). Chem. Rev.106, 4301.

    Article  CAS  PubMed  Google Scholar 

  3. D. Astruc (2007). Inorg. Chem.46, 1884.

    Article  CAS  PubMed  Google Scholar 

  4. R. K. Joshi, S. Krishnan, M. Yoshimura, and A. Kumar (2009). Nanoscale. Res. Lett.4, 1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Sriramulu and S. Sumathi (2018). Adv. Nat. Sci-Nanosci.9, 025018.

    Article  CAS  Google Scholar 

  6. S. Azizi, M. M. Shahri, H. S. Rahman, R. A. Rahim, A. Rasedee, and R. Mohamad (2017). Int. J. Nanomed.12, 8841.

    Article  CAS  Google Scholar 

  7. M. Shah, D. Fawcett, S. Sharma, S. K. Tripathy, and G. E. Poinern (2015). Materials8, 7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Sharma, S. Kanchi, and K. Bisetty (2015). Arab. J. Chem.

  9. N. Pantidos and L. E. Horsfall (2014). J. Nanomed. Nanotechnol.5, 1.

    Article  CAS  Google Scholar 

  10. A. Kanchana, S. Devarajan, and S. R. Ayyappan (2010). Nano. Micro. Lett.2, 169.

    Article  CAS  Google Scholar 

  11. M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A Chem.396, 297.

    Article  CAS  Google Scholar 

  12. R. K. Petla, S. Vivekanandhan, M. Misra, A. K. Mohanty, and N. Satyanarayana (2012). J. Biomater. Nanobiotechnol.3, 14.

    Article  CAS  Google Scholar 

  13. D. S. Sheny, D. Philip, and J. Mathew (2012). Spectrochim. Acta A.91, 35.

    Article  CAS  Google Scholar 

  14. X. Yang, Q. Li, H. Wang, J. Huang, L. Lin, W. Wang, D. Sun, Y. Su, J. B. Opiyo, L. Hong, and Y. Wang (2010). J. Nanopart. Res.12, 1589.

    Article  CAS  Google Scholar 

  15. F. Arsiya, M. H. Sayadi, and S. Sobhani (2017). Mater. Lett.186, 113.

    Article  CAS  Google Scholar 

  16. M. F. Lengke, M. E. Fleet, and G. Southam (2007). Langmuir.23, 8982.

    Article  CAS  PubMed  Google Scholar 

  17. S. Momeni and I. Nabipour (2015). Biotechnol. Appl. Biochem.176, 1937.

    Article  CAS  Google Scholar 

  18. J. Cui, N. Zhu, N. Kang, C. Ha, C. Shi, and P. Wu (2017). Chem. Eng. J.328, 1051.

    Article  CAS  Google Scholar 

  19. N. Duran, P. D. Marcato, O. L. Alves, G. I. De Souza, and E. Esposito (2005). J. Nanobiotechnol.3, 8.

    Article  Google Scholar 

  20. M. A. Elsayed, A. M. Othman, M. M. Hassan, and A. M. Elshafei (2018). Biotech8, 132.

    Google Scholar 

  21. S. Wait, D. Han, V. Muthu, K. Oliver, S. Chrostowski, F. Florindi, F. de Lorenzo, B. Gandouet, G. Spurrier, B. Ryll, and L. Wierinck (2017). J. Cancer Policy1, 13.

    Google Scholar 

  22. K. S. Hemath, G. Naveen Kumar, L. Karthik, and K. V. Bhaskara Rao (2010). Appl. Sci. Res. 6.

  23. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). CA. Cancer. J. Clin.68, 6.

    Article  Google Scholar 

  24. A. Abdal Dayem, M. Hossain, S. Lee, K. Kim, S. Saha, G. M. Yang, H. Choi, and S. G. Cho (2017). Int. J. Mol. Sci.18, 1.

    Article  CAS  Google Scholar 

  25. A. Manke, L. Wang, and Y. Rojanasakul (2013). Biomed. Res. Int. 2013.

  26. P. P. Fu, Q. Xia, H. M. Hwang, P. C. Ray, and H. Yu (2014). J. Food. Drug. Anal.22, 1.

    Article  PubMed  Google Scholar 

  27. P. Mattila, P. Salo-Vaananen, K. Konko, H. Aro, and T. Jalava (2002). J. Agric. Food. Chem.50, 22.

    Google Scholar 

  28. M. J. Feeney, A. M. Miller, and P. Roupas (2014). Nutr. Today.49, 6.

    Article  Google Scholar 

  29. B. M. Kimatu, L. Zhao, Y. Biao, G. Ma, W. Yang, F. Pei, and Q. Hu (2017). Food. Chem.1, 230.

    Google Scholar 

  30. B. Muszynska, K. Kała, J. Rojowski, A. Grzywacz, and W. Opoka (2017). Pol. J. Food. Nutr. Sci.67, 3.

    Article  CAS  Google Scholar 

  31. L. C. Buruleanu, C. Radulescu, A. A. Georgescu, F. A. Danet, R. L. Olteanu, C. M. Nicolescu, and I. D. Dulama (2018). Anal. Lett. 51.

  32. J. J. Zhang, Y. Li, T. Zhou, D. P. Xu, P. Zhang, S. Li, and H. B. Li (2016). Molecules21, 7.

    Article  CAS  Google Scholar 

  33. G. Dhamodharan and S. Mirunalini (2010). Pharmacol. Online2, 456.

    Google Scholar 

  34. L. C. Buruleanu, C. Radulescu, A. A. Georgescu, F. A. Danet, R. L. Olteanu, C. M. Nicolescu, and I. D. Dulama (2018). Anal. Lett.51, 1039.

    Article  CAS  Google Scholar 

  35. S. M. El-Sonbaty (2013). Cancer. Nanotechnol.4, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. Sriramulu and S. Sumathi (2017). Adv. Nat. Sci Nanosci.27, 045012.

    Article  CAS  Google Scholar 

  37. G. Narasimha, B. Praveen, K. Mallikarjuna, and B. Deva Prasad Raju (2011). Int. J. Nano. Dimens.2, 29.

    CAS  Google Scholar 

  38. M. Eskandari-Nojedehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2018). Green. Process. Synth.7, 38.

    Article  CAS  Google Scholar 

  39. M. Eskandari-Nojehdehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2016). Nanotechnol. Rev.5, 537.

    Article  CAS  Google Scholar 

  40. G. Dhamodharan and S. Mirunalini (2013). J. Pharm. Res.6, 818.

    CAS  Google Scholar 

  41. R. Deshpande, M. D. Bedre, S. Basavaraja, B. Sawle, S. Y. Manjunath, and A. Venkataraman (2010). Colloids Surf. B1, 79.

    Google Scholar 

  42. M. Kozarski, A. Klaus, M. Niksic, D. Jakovljevic, J. P. Helsper, and L. P. Van Griensven (2011). Food Chem.129, 4.

    Article  CAS  Google Scholar 

  43. Z. Neihaya and H. H. Zaman (2018). Microb. Pathog.116, 200.

    Article  CAS  PubMed  Google Scholar 

  44. K. Tahir, S. Nazir, A. Ahmad, B. Li, S. A. Shah, A. U. Khan, G. M. Khan, Q. U. Khan, Z. U. Khan, and F. U. Khan (2016). Rsc. Adv.89, 85903.

    Article  CAS  Google Scholar 

  45. M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). J. Mol. Catal. A Chem. 396.

  46. K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, and R. M. Gengan (2016). J. Photoch. Photobiol. B165, 87.

    Article  CAS  Google Scholar 

  47. I. Nallamuthu, A. Parthasarathi, and F. Khanum (2013). Int. Curr. Pharm. J.2, 12.

    Article  Google Scholar 

  48. P. Dauthal and M. Mukhopadhyay (2013). Ind. Eng. Chem. Res.51, 18131.

    Article  CAS  Google Scholar 

  49. I. Khan, K. Saeed, and I. Khan (2017). Arab. J. Chem.

  50. M. Gąsecka, Z. Magdziak, M. Siwulski, and M. Mleczek (2018). Eur. Food. Res. Technol.2, 244.

    Google Scholar 

  51. L. Duan, M. Li, and H. Liu (2015). Iet Nanobiotechnol.9, 349.

    Article  PubMed  Google Scholar 

  52. G. Sharmila, M. F. Fathima, S. Haries, S. Geetha, N. M. Kumar, and C. Muthukumaran (2017). J. Mol. Struct.15, 1138.

    Google Scholar 

  53. A. Lesniak, A. Salvati, M. J. Santos-Martinez, M. W. Radomski, and K. A. Dawson (2013). J. Am. Chem. Soc.135, 4.

    Article  CAS  Google Scholar 

  54. L. Wang, C. Hu, and L. Shao (2017). Int. J. Nanomed.12, 1227.

    Article  CAS  Google Scholar 

  55. A. Sarwar, H. Katas, S. N. Samsudin, and N. M. Zin (2015). PLoS ONE10, 4.

    Article  CAS  Google Scholar 

  56. A. Tantary, A. Masood, A. H. Bhat, K. B. Dar, M. A. Zargar, and S. A. Ganie (2017). Free Radicals. Antioxidants. 7.

  57. I. Palaciosa, M. Lozanoa, C. Moroa, M. D. Arrigoa, M. A. Rostagnoa, J. A. Martínez, A. García-Lafuentea, E. Guillamóna, and A. Villares (2011). Food Chem. 128.

  58. C. Petrarca, E. Clemente, L. Di Giampaolo, R. Mariani-Costantini, K. Leopold, R. Schindl, L. V. Lotti, R. Mangifesta, E. Sabbioni, Q. Niu, and G. Bernardini (2014). J. Immunol. Res. 2014.

  59. R. Long, K. Mao, X. Ye, W. Yan, Y. Huang, J. Wang, Y. Fu, X. Wang, X. Wu, Y. Xie, and Y. Xiong (2013). J. Am. Chem. Soc.8, 135.

    Google Scholar 

  60. S. Gurunathan, E. Kim, J. Han, and J. Park (2015). J. H. Molecules.20, 12.

    Google Scholar 

  61. M. I. Sriram, K. Kalishwaralal, V. Deepak, R. Gracerosepat, K. Srisakthi, and S. Colloid (2011). Surface B.85, 2.

    Article  CAS  Google Scholar 

  62. S. Gnanasekar, J. Murugaraj, B. Dhivyabharathi, V. Krishnamoorthy, P. K. Jha, P. Seetharaman, R. Vilwanathan, and S. Sivaperumal (2017). J. Appl. Biomed.16, 1.

    Google Scholar 

  63. K. Shanthi, V. Sreevani, K. Vimala, and S. Kannan (2017). P. Natl. A. Sci. India B.87, 4.

    Google Scholar 

  64. S. S. Rokade, K. A. Joshi, K. Mahajan, G. Tomar, D. S. Dubal, V. Singh, R. K. Parihar, J. Bellare, and S. Ghosh (2017). 2.

  65. S. Saranya, K. Vijayaranai, S. Pavithra, N. Raihana, and K. Kumanan (2017). Toxicol. Rep. 4.

  66. M. Dinesh, S. M. Roopan, C. I. Selvaraj, and P. Arunachalam (2017). J. Photochem. Photobiol.1, 167.

    Google Scholar 

  67. G. Sharmila, S. Haries, M. F. Fathima, S. Geetha, N. M. Kumar, and C. Muthukumaran (2017). Powder. Technol. 1320.

  68. K. Tahir, S. Nazir, B. Li, A. Ahmad, T. Nasir, A. U. Khan, S. A. A. Shah, Z. U. H Khan, G. Yasin, and M. U. Hameed (2016). J. Photoch. Photobiol. B. 164.

  69. K. Bhakyaraj, S. Kumaragurul, K. Gopinath, V. Sabitha, P. R. Kaleeswarran, V. Karthika, A. Sudha, U. Muthukumaran, K. Jayakumar, S. Mohan, and A. Arumugam (2017). Clust. Sci.28, 1.

    Article  CAS  Google Scholar 

  70. V. Manikandan, P. Velmurugan, J. H. Park, N. Lovanh, S. K. Seo, P. Jayanthi, Y. J. Park, M. Cho, and B. T. Oh (2016). Mater. Lett.185, 335.

    Article  CAS  Google Scholar 

  71. A. J. Kora and L. Rastogi (2015). Arab. J. Chem.

Download references

Acknowledgements

The authors greatly acknowledge Vellore Institute of Technology for providing lab, instrumentation facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sumathi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohana, S., Sumathi, S. Multi-Functional Biological Effects of Palladium Nanoparticles Synthesized Using Agaricus bisporus. J Clust Sci 31, 391–400 (2020). https://doi.org/10.1007/s10876-019-01652-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01652-2

Keywords

Navigation