Skip to main content
Log in

Supramolecular Adduct of γ-Cyclodextrin and [{Re6Q8}(H2O)6]2+ (Q=S, Se)

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Slow evaporation of water solution of [{Re6S8}(H2O)6]2+ generated in situ from [{Re6S8}(OH)6]4– in presence of γ-cyclodextrin (CD) leads to crystallization of {[{Re6S8}(H2O)6] ⊂ [γ-CD]}(NO3)2·12H2O (1·12H2O) supramolecular complex, which was characterized by single-crystal X-ray diffraction crystallography, IR-spectroscopy, thermogravimetric and elemental analyses. X-ray analysis confirms the formation of 1:1 {[{Re6S8}(H2O)6] ⊂ [γ-CD]}2+ inclusion compound in the solid state. However, no adduct formation was detected between [{Re6S8}(H2O)6]2+ and γ-cyclodextrin in solution, according to 1H NMR spectroscopy. In the case of in situ generated [{Re6Se8}(H2O)6]2+ the reaction solution with γ-cyclodextrin is unstable and during the crystallization only amorphous precipitate has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. V. E. Fedorov, Y. V. Mironov, N. G. Naumov, M. N. Sokolov, and V. P. Fedin (2007). Russ. Chem. Rev. 76, 529–552.

    Article  CAS  Google Scholar 

  2. A. Siegesmund and M. Köckerling (2016). In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. http://www.sciencedirect.com/science/article/pii/B9780124095472112740.

  3. M. Weisser, S. Tragland, and H.-J. Meyer (2009). J. Clust. Sci. 20, 249–258.

    Article  CAS  Google Scholar 

  4. A. Beltrán, M. Mikhailov, M. N. Sokolov, V. Pérez-Laguna, A. Rezusta, M. J. Revillo, and F. Galindo (2016). J. Mater. Chem. B 4, 5975–5979.

    Article  Google Scholar 

  5. S. Cordier, F. Grasset, Y. Molard, M. Amela-Cortes, R. Boukherroub, S. Ravaine, M. Mortier, N. Ohashiand, and N. Saito (2015). J. Inorg. Organomet. Polym. Mater. 25, 189–204.

    Article  CAS  Google Scholar 

  6. J. Elistratova, M. Mikhailov, V. Burilov, V. Babaev, I. Rizvanov, A. Mustafina, P. Abramov, M. Sokolov, A. Konovalov, and V. Federov (2014). RSC Adv. 4, 27922–27930.

    Article  CAS  Google Scholar 

  7. K. Kirakci, P. Kubát, K. Fejfarová, J. Martinčík, M. Nikland, and K. Lang (2016). Inorg. Chem. 55, 803–809.

    Article  CAS  Google Scholar 

  8. Y. Molard (2016). Acc. Chem. Res. 49, 1514–1523.

    Article  CAS  Google Scholar 

  9. A. O. Solovieva, Y. A. Vorotnikov, K. E. Trifonova, O. A. Efremova, A. A. Krasilnikova, K. A. Brylev, E. V. Vorontsova, P. A. Avrorov, L. V. Shestopalova, A. F. Poveshchenko, Y. V. Mironov, and M. A. Shestopalov (2016). J. Mater. Chem. B 4, 4839–4846.

    Article  CAS  Google Scholar 

  10. K. A. Brylev, Y. V. Mironov, S. S. Yarovoi, N. G. Naumov, V. E. Fedorov, S.-J. Kim, N. Kitamura, Y. Kuwahara, K. Yamada, S. Ishizakaand, and Y. Sasaki (2007). Inorg. Chem. 46, 7414–7422.

    Article  CAS  Google Scholar 

  11. L. F. Szczepura, D. L. Cedeño, D. B. Johnson, R. McDonald, S. A. Knott, K. M. Jeansand, and J. L. Durham (2010). Inorg. Chem. 49, 11386–11394.

    Article  CAS  Google Scholar 

  12. T. Yoshimura, A. Matsuda, Y. Ito, S. Ishizaka, S. Shinoda, H. Tsukube, N. Kitamuraand, and A. Shinohara (2010). Inorg. Chem. 49, 3473–3481.

    Article  CAS  Google Scholar 

  13. J. G. Elistratova, K. A. Brylev, A. O. Solovieva, T. N. Pozmogova, A. R. Mustafina, L. V. Shestopalova, M. A. Shestopalov, V. V. Syakayev, and A. A. Karasik (2017). J. Photochem. Photobiol. A Chem. 340, 46–52.

    Article  CAS  Google Scholar 

  14. A. A. Krasilnikova, A. O. Solovieva, A. A. Ivanov, K. E. Trifonova, T. N. Pozmogova, A. R. Tsygankova, A. I. Smolentsev, E. I. Kretov, D. S. Sergeevichev, M. A. Shestopalov, Y. V. Mironov, A. M. Shestopalov, A. F. Poveshchenko, and L. V. Shestopalova (2017). Nanomedicine: NBM 13, 755–763.

    Article  CAS  Google Scholar 

  15. M. A. Shestopalov, K. E. Zubareva, O. P. Khripko, Y. I. Khripko, A. O. Solovieva, N. V. Kuratieva, Y. V. Mironov, N. Kitamura, V. E. Fedorov, and K. A. Brylev (2014). Inorg. Chem. 53, 9006–9013.

    Article  CAS  Google Scholar 

  16. A. A. Krasilnikova, M. A. Shestopalov, K. A. Brylev, I. A. Kirilova, O. P. Khripko, K. E. Zubareva, Y. I. Khripko, V. T. Podorognaya, L. V. Shestopalova, V. E. Fedorov, and Y. V. Mironov (2015). J. Inorg. Biochem. 144, 13–17.

    Article  CAS  Google Scholar 

  17. S.-J. Choi, K. A. Brylev, J.-Z. Xu, Y. V. Mironov, V. E. Fedorov, Y. S. Sohn, S.-J. Kimand, and J.-H. Choy (2008). J. Inorg. Biochem. 102, 1991–1996.

    Article  CAS  Google Scholar 

  18. T. Aubert, A. Y. Ledneva, F. Grasset, K. Kimoto, N. G. Naumov, Y. Molard, N. Saito, H. Hanedaand, and S. Cordier (2010). Langmuir 26, 18512–18518.

    Article  CAS  Google Scholar 

  19. O. A. Efremova, K. A. Brylev, O. Kozlova, M. S. White, M. A. Shestopalov, N. Kitamura, Y. V. Mironov, S. Bauer, and A. J. Sutherland (2014). J. Mater. Chem. C 2, 8630–8638.

    Article  CAS  Google Scholar 

  20. K. A. Kovalenko, D. N. Dybtsev, S. F. Lebedkin, and V. P. Fedin (2010). Russ. Chem. Bull. 59, 741–744.

    Article  CAS  Google Scholar 

  21. A. A. Krasilnikova, A. O. Solovieva, A. A. Ivanov, K. A. Brylev, T. N. Pozmogova, M. A. Gulyaeva, O. G. Kurskaya, A. Y. Alekseev, A. M. Shestopalov, L. V. Shestopalova, A. F. Poveshchenko, O. A. Efremova, Y. V. Mironov, and M. A. Shestopalov (2017). Toxicol. Res. 6, 554–560.

    Article  CAS  Google Scholar 

  22. A. A. Krasilnikova, A. O. Solovieva, K. E. Trifonova, K. A. Brylev, A. A. Ivanov, S.-J. Kim, M. A. Shestopalov, M. S. Fufaeva, A. M. Shestopalov, Y. V. Mironov, A. F. Poveshchenko, and L. V. Shestopalova (2016). Contrast Media Mol Imaging 11, 459–466.

    Article  CAS  Google Scholar 

  23. D. Prochowicz, A. Kornowicz, I. Justyniakand, and J. Lewiński (2016). Coord. Chem. Rev. 306, 331–345.

    Article  CAS  Google Scholar 

  24. M. E. Brewster and T. Loftsson (2007). Adv. Drug Deliv. Rev. 59, 645–666.

    Article  CAS  Google Scholar 

  25. T. Loftsson and M. E. Brewster (1996). J. Pharm. Sci. 85, 1017–1025.

    Article  CAS  Google Scholar 

  26. T. Loftsson, D. Hreinsdόttirand, and M. Másson (2005). Int. J. Pharm. 302, 18–28.

    Article  CAS  Google Scholar 

  27. E. M. Martin Del Valle (2004). Process Biochem. 39, 1033–1046.

    Article  Google Scholar 

  28. J. Szejtli (1994). Med. Res. Rev. 14, 353–386.

    Article  CAS  Google Scholar 

  29. S. S. Yarovoi, Y. V. Mironov, D. Y. Naumov, Y. V. Gatilov, S. G. Kozlova, S.-J. Kim and V. E. Fedorov (2005). Eur. J. Inorg. Chem. 3945–3949.

  30. G. M. Sheldrick (2015). Acta Cryst. C 71, 3–8.

    Article  Google Scholar 

  31. C. B. Hübschle, G. M. Sheldrick, and B. Dittrich (2011). J. Appl. Cryst. 44, 1281–1284.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for Basic Research (Grant Number 17-53-16006) and LIA-CNRS 1144 CLUSPOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel A. Abramov.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.A., Ivanov, A.A., Shestopalov, M.A. et al. Supramolecular Adduct of γ-Cyclodextrin and [{Re6Q8}(H2O)6]2+ (Q=S, Se). J Clust Sci 29, 9–13 (2018). https://doi.org/10.1007/s10876-017-1312-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1312-z

Keywords

Navigation