Skip to main content
Log in

Structural, Relative Stable, and Electronic Properties of PbnSnn (n = 2–12) Clusters were Investigated Using Density Functional Theory

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structural, relative stable and electronic properties of PbnSnn (n = 2–12) alloy clusters were systematically studied using density functional theory. The isomers of PbnSnn alloy clusters were generated and determined by ab initio molecular dynamics. By comparing the calculated parameters of Pb2 dimer and Sn2 dimers with the parameters from experiments, our calculations are reasonable. With the lowest-energy structures for PbnSnn clusters, the average binding energies, fragmentation energies, second- order energy differences, vertical ionization potentials, vertical electron affinities, HOMO–LUMO gaps, and density of states were calculated and analyzed. The results indicate that the Sn atoms have a tendency to bond together, the average binding energies tend to be stable up to n = 8, Pb8Sn8 cluster is a good candidate to calculate the molecular interaction energy parameter in Wilson equation, the clusters become less chemical stable and show an insulator-to-metallic transition, 3, 6, 8 and 11 are magic numbers of PbnSnn (n = 2–12) clusters, the charges always transfer from Sn atoms to Pb atoms in PbnSnn clusters except for Pb10Sn10 cluster, and density of states of PbnSnn clusters becoming continuous and shifting toward negative with the increasing size n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. T. Campbell (2013). The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity. Acc. Chem. Res. 46, 1712.

    Article  CAS  Google Scholar 

  2. H. Zhang, M. Jin, Y. Xiong, B. Lim, and Y. Xia (2013). Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Acc. Chem. Res. 46, 1783.

    Article  CAS  Google Scholar 

  3. D. Cortes-Arriagada, M. P. Oyarzun, L. Sanhueza, and A. Toro-Labbe (2015). Binding of Trivalent Arsenic onto the Tetrahedral Au20 and Au19Pt Clusters: Implications in Adsorption and Sensing. J. Phys. Chem. A 119, 6909.

    Article  CAS  Google Scholar 

  4. S. Hirabayashi and M. Ichihashi (2015). NO Decomposition Activated by Preadsorption of O2 onto Copper Cluster Anions. J. Phys. Chem. C 119, 10850.

    Article  CAS  Google Scholar 

  5. Z. Ben-Xia, D. Dong, W. Ling, and Y. Ji-Xian (2014). Density functional study on the structural, electronic, and magnetic properties of 3d transition-metal-doped Au5 clusters. J. Phys. Chem. A 118, 4005.

    Article  Google Scholar 

  6. F. Aguilera-Granja, M. B. Torres, A. Vega, and L. C. Balbas (2012). Structural, electronic, and magnetic properties Of ConCum nanoalloys (m + n = 12) from first principles calculations. J. Phys. Chem. A 116, 9353.

    Article  CAS  Google Scholar 

  7. P. Chen, Y. Li, J. Ma, J. Huang, C. Chen, and H. Chang (2016). Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices. Sci. Rep. 6, 24882.

    Article  CAS  Google Scholar 

  8. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne (2008). Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442.

    Article  CAS  Google Scholar 

  9. W. Ma and F. Chen (2012). Optical and electronic properties of Cu doped Ag clusters. J. Alloys Compd. 541, 79.

    Article  CAS  Google Scholar 

  10. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas (1999). Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897.

    Article  CAS  Google Scholar 

  11. M. Zhou, C. Zeng, Y. Chen, S. Zhao, M. Y. Sfeir, M. Zhu, and R. Jin (2016). Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 7, 13240.

    Article  CAS  Google Scholar 

  12. R. Jin, C. Zeng, M. Zhou, and Y. Chen (2016). Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 116, 10346.

    Article  CAS  Google Scholar 

  13. O. Fenwick, E. Coutino-Gonzalez, D. Grandjean, W. Baekelant, F. Richard, S. Bonacchi, D. De Vos, P. Lievens, M. Roeffaers, J. Hofkens, and P. Samori (2016). Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017.

    Article  CAS  Google Scholar 

  14. G. Seifert (2004). Nanomaterials: Nanocluster magic. Nat. Mater. 3, 77.

    Article  CAS  Google Scholar 

  15. X. Yang, X. Chen, C. Zhang, X. Xie, B. Yang, B. Xu, D. Liu, and H. Yang (2016). Prediction of vapor–liquid equilibria for the Pb–X (X = Ag, Cu and Sn) systems in vacuum distillation using ab initio methods and Wilson equation. Fluid Phase Equilib. 417, 25.

    Article  CAS  Google Scholar 

  16. A. K. Sum and S. I. Sandler (1999). Use of ab initio methods to make phase equilibria predictions using activity coefficient models. Fluid Phase Equilib. 158–160, 375.

    Article  Google Scholar 

  17. S. Osmekhin, M. Tchaplyguine, M. H. Mikkelä, M. Huttula, T. Andersson, O. Björneholm, and S. Aksela (2010). Size-dependent transformation of energy structure in free tin clusters studied by photoelectron spectroscopy. Phys. Rev. A 81, 023203.

    Article  Google Scholar 

  18. M. Tchaplyguine, G. Öhrwall, T. Andersson, S. Svensson, O. Björneholm, M. Huttula, M. Mikkelä, S. Urpelainen, S. Osmekhin, A. Caló, S. Aksela, and H. Aksela (2014). Size-dependent evolution of electronic structure in neutral Pb clusters—As seen by synchrotron-based X-ray photoelectron spectroscopy. J. Electron Spectrosc. 195, 55.

    Article  CAS  Google Scholar 

  19. J. Bahn, P. Oelßner, M. Köther, C. Braun, V. Senz, S. Palutke, M. Martins, E. Rühl, G. Ganteför, T. Möller, B. von Issendorff, D. Bauer, J. Tiggesbäumker, and K. H. Meiwes-Broer (2012). Pb 4f photoelectron spectroscopy on mass-selected anionic lead clusters at FLASH. New J. Phys. 14, 075008.

    Article  Google Scholar 

  20. B. Wang, J. Zhao, X. Chen, D. Shi, and G. Wang (2005). Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n = 2–22). Phys. Rev. A 71, 033201.

    Article  Google Scholar 

  21. B. Assadollahzadeh, S. Schäfer, and P. Schwerdtfeger (2010). Electronic properties for small tin clusters Snn (n ≤ 20) from density functional theory and the convergence toward the solid state. J. Comput. Chem. 31, 929.

    CAS  Google Scholar 

  22. C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2001). Small clusters of tin: Atomic structures, energetics, and fragmentation behavior. Phys. Rev. B 64, 233405.

    Article  Google Scholar 

  23. C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2002). Ionization potentials of small tin clusters: first principles calculations. Chem. Phys. Lett. 356, 36.

    Article  CAS  Google Scholar 

  24. C. Majumder, V. Kumar, H. Mizuseki, and Y. Kawazoe (2005). Atomic and electronic structures of neutral and cation Snn (n = 2–20) clusters: A comparative theoretical study with different exchange-correlation functionals. Phys. Rev. B 71, 035401.

    Article  Google Scholar 

  25. T. Bachels and R. Schäfer (1999). Formation enthalpies of Sn clusters: a calorimetric investigation. Chem. Phy. Lett. 300, 177.

    Article  CAS  Google Scholar 

  26. S. Yahachi, Y. Kenzi, M. Kazuhiro, and N. Tamotsu (1982). Formation and Ionization Potentials of Lead Clusters. Jpn. J. Appl. Phys. 21, L396.

    Article  Google Scholar 

  27. C. Rajesh and C. Majumder (2007). Atomic and electronic structures of neutral and charged Pbn clusters (n = 2–15): theoretical investigation based on density functional theory. J. Chem. Phys. 126, 244704.

    Article  Google Scholar 

  28. X. Li, W. Lu, C. Wang, and K. M. Ho (2010). Structures of Pbn (n = 21–30) clusters from first-principles calculations. J. Phys. Condens. Matter 22, 465501.

    Article  Google Scholar 

  29. E. M. Sosa-Hernández, J. M. Montejano-Carrizales, and P. G. Alvarado-Leyva (2015). Stability and magnetic behavior of small CoxSny (x + y ≤ 5) atomic clusters. J. Alloys Compd. 632, 772.

    Article  Google Scholar 

  30. P. N. Samanta and K. K. Das (2012). Electronic structure, bonding, and properties of SnmGen (m + n ⩽ 5) clusters: A DFT study. Comput. Theor. Chem. 980, 123.

    Article  CAS  Google Scholar 

  31. E. M. Sosa-Hernández, J. M. Montejano-Carrizales, and P. G. Alvarado Leyva (2015). Geometrical shapes, stabilities and electronic behavior of small FexSny (x + y ≤ 5) atomic clusters. Eur. Phys. J. D 69, 212.

    Article  Google Scholar 

  32. T. B. Tai, N. M. Tam, and M. T. Nguyen (2011). Evolution of structures and stabilities of zinc-doped tin clusters SnnZn, n = 1–12. Three-dimensional aromaticity of the magic clusters Sn10Zn and Sn12Zn. Chem. Phys. 388, 1.

    Article  CAS  Google Scholar 

  33. L. O. Paz-Borbon, A. Hellman, J. M. Thomas, and H. Gronbeck (2013). Efficient hydrogenation over single-site bimetallic RuSn clusters. Phys. Chem. Chem. Phys. 15, 9694.

    Article  CAS  Google Scholar 

  34. J. J. Melko, U. Werner, R. Mitric, V. Bonacic-Koutecky, and A. W. Castleman Jr. (2011). Electronic structure similarities in PbxSb y and SnxBi y clusters. J. Phys. Chem. A 115, 10276.

    Article  CAS  Google Scholar 

  35. X. Xing, Z. Tian, H. Liu, and Z. Tang (2003). Magic bimetallic cluster anions of M/Pb (M = Au, Ag and Cu) observed and analyzed by laser ablation and time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 17, 1411.

    Article  CAS  Google Scholar 

  36. J. J. Melko, S. V. Ong, U. Gupta, J. U. Reveles, J. D’Emidio, S. N. Khanna, and A. W. Castleman (2010). Anion Photoelectron Spectroscopy and First-Principles Study of PbxIny Clusters. J. Phys. Chem. C 114, 20907.

    Article  CAS  Google Scholar 

  37. C. Rajesh and C. Majumder (2008). Structure and electronic properties of PbnM (M = C, Al, In, Mg, Sr, Ba, and Pb; n = 8, 10, 12, and 14) clusters: theoretical investigations based on first principles calculations. J. Chem. Phys. 128, 024308.

    Article  Google Scholar 

  38. S. Barman, C. Rajesh, G. P. Das, and C. Majumder (2009). Structural and electronic properties of Snn−1Pb and Pbn−1Sn clusters: a theoretical investigation through first principles calculations. Eur. Phys. J. D 55, 613.

    Article  CAS  Google Scholar 

  39. S. Orel and R. Fournier (2013). Density functional theory and global optimization study of SnmPbn clusters (7 ⩽ m + n ⩽ 12, 0 ⩽ m/(m + n) ⩽ 1). J. Chem. Phys. 138, 064306.

    Article  Google Scholar 

  40. X. Huang, Y. Su, L. Sai, J. Zhao, and V. Kumar (2015). Low-Energy Structures of Binary Pt–Sn Clusters from Global Search Using Genetic Algorithm and Density Functional Theory. J. Clust. Sci. 26, 389.

    Article  CAS  Google Scholar 

  41. V. E. Bondybey, M. Heaven, and T. A. Miller (1983). Laser vaporization of tin: Spectra and ground state molecular parameters of Sn2. J. Chem. Phys. 78, 3593.

    Article  CAS  Google Scholar 

  42. S. Yoshida and K. Fuke (1999). Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: Ionization potentials for Gen (n = 2–57) and Snn (n = 2–41). J. Chem. Phys. 111, 3880.

    Article  CAS  Google Scholar 

  43. C. Rajesh, C. Majumder, M. G. R. Rajan, and S. K. Kulshreshtha (2005). Isomers of small Pbn clusters (n = 2–15): Geometric and electronic structures based onab initiomolecular dynamics simulations. Phys. Rev. B 72, 235411.

    Article  Google Scholar 

  44. M. E. Eberhart, R. C. O’Handley, and K. H. Johnson (1984). Molecular-orbital models of structural phase transformations in crystalline and amorphous cobalt alloys. Phys. Rev. B 29, 1097.

    Article  CAS  Google Scholar 

  45. Y. Bai, H. Cheng, H. Sun, N. Xu, and K. Deng (2011). Structures, stabilities and electronic properties of FePbn (n = 1–14) clusters: Density-functional theory investigations. Physica B 406, 3781.

    Article  CAS  Google Scholar 

  46. J. Wen, J. Zhang, G. Chen, X. Zhang, and Z. Wen (2016). Structure, stability and magnetic properties of (NiAl)n(n ≤ 6) clusters. J. Phys. Chem. Solids 96–97, 68.

    Article  Google Scholar 

  47. F. Suo, Y. Zhang, and S. Huang (2017). Theoretical Investigation of Electronic Properties of Undoped and Ag-Doped (CdTe)16×N Multi-cage Nanochains. J. Clust. Sci. 28, 1393.

    Article  Google Scholar 

  48. K. Li, C. Yang, M. Wang, and X. Ma (2017). Adsorption and Dissociation of H2 on Cluster Al6N. J. Clust. Sci. 28, 1335.

    Article  Google Scholar 

  49. Y. Jin, Y. Tian, X. Kuang, C. Zhang, C. Lu, J. Wang, J. Lv, L. Ding, and M. Ju (2015). Ab Initio Search for Global Minimum Structures of Pure and Boron Doped Silver Clusters. J. Phys. Chem. A 119, 6738.

    Article  CAS  Google Scholar 

  50. X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2016). Study of the Structural and Electronic Properties of Neutral and Charged Niobium-Doped Silicon Clusters: Niobium Encapsulated in Silicon Cages. J. Phys. Chem. C 120, 677.

    Article  CAS  Google Scholar 

  51. G. Li, J. Wang, X. Chen, Z. Zhou, H. Yang, B. Yang, B. Xu, and D. Liu (2017). Bimetallic PbnCun (n = 2–14) clusters were investigated by density functional theory. Comput. Theor. Chem. 1106, 21.

    Article  CAS  Google Scholar 

  52. Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju (2015). Geometries, stabilities and fragmental channels of neutral and charged sulfur clusters: S Qn (n = 3–20, Q = 0, ±1). Phys. Chem. Chem. Phys. 17, 13590.

    Article  CAS  Google Scholar 

  53. X. Xing, A. Hermann, X. Kuang, M. Ju, C. Lu, Y. Jin, X. Xia, and G. Maroulis (2016). Insights into the geometries, electronic and magnetic properties of neutral and charged palladium clusters. Sci. Rep. 6, 19656.

    Article  CAS  Google Scholar 

  54. W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Evolution of the Structural and Electronic Properties of Medium-Sized Sodium Clusters: A Honeycomb-Like Na20 Cluster. Inorg. Chem. 56, 1241–1248.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Regional Foundation of the National Natural Science Foundation of China (51664032), the Foundation of the State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization (CNMRCUTS1503), the Joint Foundation of the National Natural Science Foundation of China–Yunnan province (U1502271), the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province (2014HA003), the Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology (2014RA4018) and the National Key Research and Development Program of China (2016YFC0400404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-min Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Gf., Zhou, Zq., Chen, Xm. et al. Structural, Relative Stable, and Electronic Properties of PbnSnn (n = 2–12) Clusters were Investigated Using Density Functional Theory. J Clust Sci 28, 2503–2516 (2017). https://doi.org/10.1007/s10876-017-1242-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1242-9

Keywords

Navigation