Skip to main content
Log in

Real and Imaginary Parts of Magnetic Susceptibility of Fine Dispersed Nanoparticles Synthesized by Reverse Micelle: From Superparamagnetic Trend to Ferrimagnetic State

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Ni0.6Zn0.4Fe2−xCrxO4 (x = 0–0.5) ferrite nanoparticles were prepared using reverse micelle process. X-ray diffraction patterns demonstrated that single phase of spinel ferrites are obtained. TEM micrographs demonstrate the formation of well dispersed nanoparticle with almost spherical morphologies. The EDS analysis proved that the chemical composition has almost uniform distribution in the whole series of samples. Magnetic dynamics of the samples was studied by the measurement of AC magnetic susceptibility versus temperature at different frequencies. The phenomenological Néel–Brown and Vogel–Fulcher models were employed to distinguish between the interacting or non-interacting system. Results exhibited that there is strong interaction between fine particles. The results obtained from vibrating sample magnetometer confirmed that with an increase in chromium content, the saturation magnetization increases. SQUID results at 2 K displayed the ferromagnetic state in nanoparticle and it was found that with an increase in substitution contents, the coercivity decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. P. Herrera, L. Polo-Corrales, E. Chavez, J. Cabarcas-Bolivar, O. N. C. Uwakweh, and C. Rinaldi (2013). J. Magn. Magn. Mater. 328, 41.

    Article  CAS  Google Scholar 

  2. M. Sajjia, K. Y. Benyounis, and A. G. Olabi (2012). Powder Technol. 222, 143.

    Article  CAS  Google Scholar 

  3. M. Sajjia, M. Oubaha, M. Hasanuzzaman, and A. G. Olabi (2014). Ceram. Int. 40, 1147.

    Article  CAS  Google Scholar 

  4. M. Houshiar, F. Zebhi, Z. Jafari Razi, A. Alidoust, and Z. Askari (2014). J. Magn. Magn. Mater. 371, 43.

    Article  CAS  Google Scholar 

  5. K. O. Abdulwahab, M. A. Malik, P. O’Brien, and G. A. Timco (2014). Mater. Sci. Semicond. Process. 27, 303.

    Article  CAS  Google Scholar 

  6. V. G. Andreev, S. B. Menshova, A. N. Klimov, R. M. Vergazov, S. B. Bibikov, and M. V. Prokofiev (2015). J. Magn. Magn. Mater. 394, 1.

    Article  CAS  Google Scholar 

  7. V. G. Andreev, S. B. Menshova, A. N. Klimov, and R. M. Vergazov (2015). J. Magn. Magn. Mater. 393, 569.

    Article  CAS  Google Scholar 

  8. M. A. Gabal, Y. M. Al Angari, and F. A. Al-Agel (2015). J. Magn. Magn. Mater. 391, 108.

    Article  CAS  Google Scholar 

  9. M. A. Gabal, W. A. Bayoumy, A. Saeed, and Y. M. Al Angari (2015). J. Magn. Magn. Mater. 1097, 45.

    CAS  Google Scholar 

  10. Z. Zheng, H. Zhang, Q. Yang, and L. Jia (2015). J. Alloys Compd. 648, 160.

    Article  CAS  Google Scholar 

  11. Y. Köseoğlu (2015). Ceram. Int. 41, 6417.

    Article  Google Scholar 

  12. Ch. Srinivas, B. V. Tirupanyam, A. Satish, V. Seshubai, D. L. Sastry, and O. F. Caltun (2015). J. Magn. Magn. Mater. 382, 15.

    Article  CAS  Google Scholar 

  13. A. Ghasemi, V. Šepelák, X. X. Liu, and A. Morisako (2013). J. Appl. Phys. 113, 17B524.

    Article  Google Scholar 

  14. A. Ghasemi, V. Šepelák, X. X. Liu, and A. Morisako (2010). J. Appl. Phys. 107, 09A743.

    Google Scholar 

  15. A. Ghasemi, V. Šepelák, X. Liu, and A. Morisako (2009). IEEE Trans. Magn. 45, 2456.

    Article  CAS  Google Scholar 

  16. A. Ghasemi, X. Liu, and A. Morisako (2009). IEEE Trans. Magn. 45, 4420.

    Article  CAS  Google Scholar 

  17. A. Ghasemi and A. Morisako (2008). J. Magn. Magn. Mater. 320, 1167.

    Article  CAS  Google Scholar 

  18. W. A. Johnson and R. F. Mehl (1939). Trans. Am. Inst. Min. (Metall.) Eng. 135, 416.

    Google Scholar 

  19. M. P. Pileni (1997). Langmuir 13, 3266.

    Article  CAS  Google Scholar 

  20. H. Althues and S. Kaskel (2002). Langmuir 18, 7428.

    Article  CAS  Google Scholar 

  21. P. K. Roy and J. Bera (2008). J. Magn. Magn. Mater. 197, 279.

    CAS  Google Scholar 

  22. S. A. Ghodake, U. R. Ghodake, S. R. Sawant, S. S. Suryavanshi, and P. P. Bakare (2006). J. Magn. Magn. Mater. 305, 110.

    Article  CAS  Google Scholar 

  23. W.-C. Hsu, S. C. Chen, P. C. Kuo, C. T. Lie, and W. S. Tsai (2004). Mater. Sci. Eng. B 111, 142.

    Article  Google Scholar 

  24. I. Yaacob, A. Nunes, A. Bose, and D. Shah (1994). J. Colloid Interface Sci. 168, 289.

    Article  CAS  Google Scholar 

  25. J. L. Dormann, D. Fiorani, and D. Tronc (1999). J. Magn. Magn. Mater. 202, 251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A. Real and Imaginary Parts of Magnetic Susceptibility of Fine Dispersed Nanoparticles Synthesized by Reverse Micelle: From Superparamagnetic Trend to Ferrimagnetic State. J Clust Sci 27, 979–992 (2016). https://doi.org/10.1007/s10876-016-0978-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0978-y

Keywords

Navigation