Skip to main content
Log in

Influence of crystal size on structural, magnetic, mechanical, and dielectric properties of Ni-Cu-Zn nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The nanocrystalline spinel ferrite, Ni0.3Cu0.2Zn0.5Fe2O4, was prepared by sol–gel self-ignition route. The synthesized samples were annealed at two different temperatures 400 °C and 600 °C for 4 h. The characterization study of these two ferrite samples along with the as-prepared (without annealing) sample was performed by means of X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer, elastic, and dielectric spectroscopy. The formation of the ferrites having single-phase cubic structure was revealed from the analysis of X-ray diffraction patterns. The increase in crystal size with increasing temperature of annealing was obtained from X-ray diffraction data. The lattice constant was increased with the increase in annealing temperature. Transmission electron microscope images exhibit spherical crystalline particles having size in the range of 8 to 12 nm. Analysis of the hysteresis loops obtained by vibrating sample magnetometer shows that as annealing temperature increases, saturation magnetization and coercivity are also increased. Room temperature values of shearing velocity (VS) and longitudinal velocity (VL) are obtained from the Ultrasonic Pulse transmission method, and are employed to determine the elastic moduli and Poisson’s ratio. The values of these moduli are increased with increasing temperature of annealing, which predict the strength of bonding force between atoms. The dielectric parameters viz. dielectric constant (ε') along with corresponding loss (ε") are explained on the basis of hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Su, H. Zhang, X. Tang, L. Jia, Q. Wen, Sintering characteristics and magnetic properties of NiCuZn ferrites for MLCI applications. Mater. Sci. Eng. B 129, 172–175 (2006)

    Article  CAS  Google Scholar 

  2. C.L. Miao, J. Zhou, X.M. Cui, X.H. Wang, Z.X. Yue, L.T. Li, Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters. Mater. Sci. Eng. B 127, 1–5 (2006)

    Article  CAS  Google Scholar 

  3. C. Miclea, C. Tanasoiu, C.F. Miclea, A. Gheorgjiu, V. Tanasiou, Soft ferrite materials for magnetic temperature transducers and applications. J. Magn. Magn. Mater. 290, 1506–1509 (2005)

    Article  CAS  Google Scholar 

  4. N. Rezlescu, C. Doroftei, P.D. Popa, Humidity-sensitive electrical resistivity of MgFe2O4 and Mg0.9Sn0.1Fe2O4 porous ceramics. Rom. J. Phys. 52, 353–360 (2007)

    CAS  Google Scholar 

  5. Watanabe H, Kanagawa Y, Suzuki T, Nomura T (1990) U. S. Patent No. 4956114

  6. T. Nakamura, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285–291 (1997)

    Article  CAS  Google Scholar 

  7. J.H. Jean, C.H. Lee, W.S. Kou, Effects of Lead (II) oxide on processing and properties of low temperature cofirable Ni-Cu-Zn Ferrite. J. Am. Ceram. Soc. 82, 343–350 (1999)

    Article  CAS  Google Scholar 

  8. Charles RJ, Achuta AR (1990) U. S. Patent No. 4966625

  9. J. Murbe, J. Topfer, Ni-Cu-Zn Ferrites for low temperature firing: ferrite composition and its effect on sintering behavior and permeability. J. Electroceram. 15, 215 (2005)

    Article  Google Scholar 

  10. E.C. Snelling, Soft Ferrites: Properties and Applications, 2nd edn. (Butter worth’s, London, 1988)

    Google Scholar 

  11. P.S.A. Kumar, J.J. Shrotri, S.D. Kulkarni, C.E. Deshpande, S.K. Date, Low temperature synthesis of Ni0.8Zn0.2Fe2O4 powder and its characterization. Mater. Lett. 27, 293–296 (1996)

    Article  Google Scholar 

  12. N.J. Chu, X.Q. Wang, Y.P. Liu, H.X. Jin, Q. Wu, L. Li, Z.S. Wang, H.L. Ge, Magnetic properties of low Mn-doped NiCuZn nanocrystalline ferrites. J. Alloy Compd. 470, 438–442 (2009)

    Article  CAS  Google Scholar 

  13. J.R. Groza, C.I. Contescu, K. Putyera (eds.), Dekker Encyclopedia of Nanoscience and Nanotechnolgy (Taylor & Francis, Routledge, 2009)

    Google Scholar 

  14. X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249–251 (2006)

    Article  CAS  Google Scholar 

  15. E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663–668 (2003)

    Article  CAS  Google Scholar 

  16. Y.B. Pithawalla, M.S. El-Shall, S.C. Deevi, V. Strom, K.V. Rao, Synthesis of magnetic intermetallic Fe Al nanoparticles from a non-magnetic bulk alloy. J. Phys. Chem. B 105, 2085–2090 (2001)

    Article  CAS  Google Scholar 

  17. P. Bayliss, D.K. Smith (1986) Mineral powder diffraction file. JCPDS, USA

  18. B.D. Cullity, Elements of X-Ray Diffraction (Addison-wesley Publish Co, England, 1967)

    Google Scholar 

  19. S.E. Shirsath, D. Wang, S.S. Jadhav, M.L. Mane, S. Li, Ferrites obtained by Sol-gel method, in Handbook of Sol-gel Science and Technology. (Springer, New York, 2018)

    Google Scholar 

  20. J.Y. Patil, M.S. Khandekar, I.S. Mulla, S.S. Suryavanshi, Combustion synthesis of magnesium ferrite as liquid petroleum gas (LPG) sensor: Effect of sintering temperature. Curr. Appl. Phys. 12, 319–324 (2012)

    Article  Google Scholar 

  21. A.B. Mugutkar, S.K. Gore, R.S. Mane, K.M. Batoo, S.F. Adil, S.S. Jadhav, Magneto-structural behaviour of Gd doped nanocrystalline Co-Zn ferrites governed by domain wall movement and spin rotations. Ceram. Int. 44, 21675–21683 (2018)

    Article  CAS  Google Scholar 

  22. B.D. Cullity, Elements of X-Ray Diffraction (Addison Wesley, Massachusetts, 1956)

    Google Scholar 

  23. X. Pan, A. Sun, Y. Han, W. Zhang, X. Zhao, Effects of different sintering temperature on structural and magnetic properties of Ni-Cu-Co ferrite nanoparticles. Mod. Phys. Lett. B 32, 1850321 (2018)

    Article  CAS  Google Scholar 

  24. Y. Han, A. Sun, X. Pan, W. Zhang, X. Zhao, Effect of different sintering temperatures on structural and magnetic properties of Zn–Co ferrite nanoparticles. J. Supercond. Nov. Magn. 32, 3823–3830 (2019)

    Article  CAS  Google Scholar 

  25. F. Hcini, S. Hcini, B. Alzahrani, S. Zemni, M.L. Bouazizi, Effects of sintering temperature on structural, infrared, magnetic and electrical properties of Cd0.5Zn0.5FeCrO4 ferrites prepared by sol–gel route. J. Mater. Sci. 31, 14986–14997 (2020)

    CAS  Google Scholar 

  26. S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322, 686–691 (2010)

    Article  CAS  Google Scholar 

  27. S. Nasrin, S.M. Khan, M.A. Matin, M.N.I. Khan, A.K.M.A. Hossain, M.D. Rahaman, Synthesis and deciphering the effects of sintering temperature on structural, elastic, dielectric, electric and magnetic properties of magnetic Ni0.25Cu0.13Zn0.62Fe2O4 ceramics. J. Mater. Sci. 30, 10722–10741 (2019)

    CAS  Google Scholar 

  28. N. Mechi, A. Mallah, S. Hcini, M.L. Bouazizi, M. Boudard, A. Dhahri, Effects of sintering temperature on microstructural, magnetic, and impedance spectroscopic properties of Ni0.4Cd0.3Zn0.3Fe2O4 ferrites. J. Supercond. Nov. Magn. 33, 1547–1557 (2020)

    Article  CAS  Google Scholar 

  29. S.L. Kadam, C.M. Kanamadi, K.K. Patankar, B.K. Chougule, Dielectric behaviour and magnetoelectric effect in Ni0.5Co0.5Fe2O4+Ba0.8Pb0.2TiO3 ME composites. Mater. Lett. 59, 215–219 (2005)

    Article  CAS  Google Scholar 

  30. S.L. Kadam, K.K. Patankar, V.L. Mathe, M.B. Kothale, R.B. Kale, B.K. Chougule, Electrical properties and magnetoelectric effect in Ni0.75Co0.25Fe2O4+Ba0.8Pb0.2TiO3 composites. Mater. Chem. Phys. 78, 684–690 (2003)

    Article  CAS  Google Scholar 

  31. R.P. Mahajan, K.K. Patankar, N.M. Burange, S.C. Chaudhari, A.K. Ghatage, S.A. Patil, Dielectric properties and electrical conduction of nickel barium ferrite titanate composite. Ind. J. Pure Appl. Phys. 38, 615–620 (2000)

    CAS  Google Scholar 

  32. A.M.E. Nahrawy, A.B.A. Hammad, A.M. Bakr, A.R. Wassel, Adjustment of morphological and dielectric properties of ZnTiO3 nanocrystalline using Al2O3 nanoparticles. Appl. Phys. A 125, 54 (2019)

    Article  CAS  Google Scholar 

  33. S. Upadhyay, O. Parkash, D. Kumar, Synthesis, structure and electrical behaviour of nickel-doped barium stannate. J. Alloy Compd. 432, 258–264 (2007)

    Article  CAS  Google Scholar 

  34. D.R. Mane, S. Patil, D.D. Birajdar, A.B. Kadam, S.E. Shirsath, R.H. Kadam, So-gel synthesis of Cr3+ substituted Li0.5Fe2.5O4: cation distribution, structural and magnetic properties. Mater. Chem. Phys. 126, 755–760 (2011)

    Article  CAS  Google Scholar 

  35. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater. 311, 494–499 (2007)

    Article  CAS  Google Scholar 

  36. A.V. Humbe, J.S. Kounsalye, S.B. Somvanshi, A. Kumar, K.M. Jadhav, Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Mater. Adv. 1, 880 (2020)

    Article  CAS  Google Scholar 

  37. K.S. Ramakrishna, Ch. Srinivas, S.S. Meena, B.V. Tirupanyam, P. Bhatt, S.M. Yusuf, C.L. Prajapat, D.M. Potukuchi, D.L. Sastry, Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0.1Zn0.9−xFe2O4 nanoferrites: Role of constant mole percent of Cu2+ dopant in place of Zn2+. Ceram. Int. 43, 7984–7991 (2017)

    Article  CAS  Google Scholar 

  38. D.L. Navgare, V.B. Kawade, U.B. Tumberphale, S.S. Jadhav, R.S. Mane, S.K. Gore, Superparamagnetic cobalt-substituted copper zinc ferrialuminate: synthesis, morphological, magnetic and dielectric properties investigation. J. Sol-Gel. Sci. Technol. 93, 633–642 (2020)

    Article  CAS  Google Scholar 

  39. M.A. Gabal, Effect of Mg substitution on the magnetic properties of NiCuZn ferrite nanoparticles prepared through a novel method using egg white. J Magn. Magn. Mater. 321, 3144–3148 (2009)

    Article  CAS  Google Scholar 

  40. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.E. Shirsath, S.S. Jadhav, Role of composition and grain size in controlling the structure sensitive magnetic properties of Sm3+ substituted nanocrystalline Co-Zn ferrites. J. Rare Earths 38, 1069–1075 (2020)

    Article  CAS  Google Scholar 

  41. A.B.A. Hammad, B.A. Hemdan, A.M. El Nahrawy, Facile synthesis and potential application of Ni0.6Zn0.4Fe2O4 and Ni0.6Zn0.2Ce0.2Fe2O4 magnetic nanocubes as a new strategy in sewage treatment. J. Environ. Manag. 270, 110816 (2020)

    Article  CAS  Google Scholar 

  42. A.B.A. Hammad, A.G. Darwish, A.M. El Nahrawy, Identification of dielectric and magnetic properties of core shell ZnTiO3/CoFe2O4 nanocomposites. Appl.Phys. A 126, 504 (2020)

    Article  CAS  Google Scholar 

  43. P.K. Roy, J. Bera, Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion method. J. Magn. Magn. Mater. 298, 38–42 (2006)

    Article  CAS  Google Scholar 

  44. Ch. Sujatha, K.V. Reddy, K.S. Babu, A.R. Reddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013)

    Article  CAS  Google Scholar 

  45. J.B. Shitole, S.N. Keshatti, S.M. Rathod, S.S. Jadhav, Y3+ composition and particle size influenced magnetic and dielectric properties of nanocrystalline Ni0.5Cu0.5YxFe2-xO4 ferrites. Ceram. Int. 47, 17993–18002 (2021)

    Article  CAS  Google Scholar 

  46. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.F. Shaikh, M. Ubaidullah, A.M. Al-Enizi, S.S. Jadhav, The role of La3+ substitution in modification of the magnetic and dielectric properties of the nanocrystalline Co-Zn ferrites. J. Magn. Magn. Mater. 502, 166490 (2020)

    Article  CAS  Google Scholar 

  47. R. Jasrotia, P. Puri, A. Verma, V.P. Singh, Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application. J. Sol. Stat. Chem. 289, 121462 (2020)

    Article  CAS  Google Scholar 

  48. P.K. Roy, B.B. Nayak, J. Bera, Study on electro-magnetic properties of La substituted Ni–Cu–Zn ferrite synthesized by auto-combustion method. J. Magn. Magn. Mater. 320, 1128–1132 (2008)

    Article  CAS  Google Scholar 

  49. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017)

    Article  CAS  Google Scholar 

  50. D. Ravinder, Elastic behaviour of lithium ferrites. Mater Lett 45, 125–127 (2000)

    Article  CAS  Google Scholar 

  51. S.G. Algude, S.M. Patange, S.E. Shirsath, D.R. Mane, Elastic behaviour of Cr3+ substituted Co-Zn ferrites. J. Magn. Magn. Mater. 350, 39–41 (2014)

    Article  CAS  Google Scholar 

  52. A. Bhaskar, S.R. Murthy, Effect of sintering temperatures on the elastic properties of Mn (1%) added MgCuZn ferrites. J. Magn. Magn. Mater. 355, 100–103 (2014)

    Article  CAS  Google Scholar 

  53. Y.C. Venudhar, K.S. Mohan, Elastic behaviour of lithium–cobalt mixed ferrites. Mater. Lett. 55, 196–199 (2002)

    Article  CAS  Google Scholar 

  54. C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  Google Scholar 

  55. A.M. El Nahrawy, A.M. Bakr, B.A. Hemdan, A.B. Abou Hammad, Identification of Fe3+ co-doped zinc titanate mesostructures using dielectric and antimicrobial activities. Int. J. Environ. Sci. Technol. 17, 4481–4494 (2020)

    Article  CAS  Google Scholar 

  56. A.B.A. Hammad, A.M. Bakr, M.S. Abdel-Aziz, A.M. El Nahrawy, Exploring the ferroelectric effect of nanocrystalline strontium zinc titanate/Cu: Raman and antimicrobial activity. J. Mater. Sci. 31, 7850–7861 (2020)

    Google Scholar 

  57. J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70, 144106 (2004)

    Article  CAS  Google Scholar 

  58. M. Arifuzzaman, M.B. Hossen, M.H. Rashid, M.S. Ahmed, M.S. Islam, Effect of annealing temperature on the structural, dielectric and electric properties of Ni0.7Cd0.3Fe2O4 ferrites. Bull. Mater. Sci. 43, 155 (2020)

    Article  CAS  Google Scholar 

  59. R. Qindeel, N.H. Alonizan, Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr. Appl. Phys. 18, 519–525 (2018)

    Article  Google Scholar 

  60. A.B. Mugutkar, S.K. Gore, R.S. Mane, S.M. Patange, S.S. Jadhav, S.F. Shaikh, A.M. Al-Enizi, A. Nafady, B.M. Thamer, M. Ubaidullah, Structural modifications in Co–Zn nanoferrites by Gd substitution triggering to dielectric and gas sensing applications. J. Alloy. Compd. 844, 156178 (2020)

    Article  CAS  Google Scholar 

  61. E.R. Kumar, T. Arunkumar, T. Prakash, Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles. Superlatt. Microstruct. 85, 530–535 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Deanship of Scientific Research at King Khalid University for funding this work through the Research Group Project under Grant number R.G.P.2/96/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh S. Jadhav.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awati, V.V., Pawar, R.A., Rathod, S.M. et al. Influence of crystal size on structural, magnetic, mechanical, and dielectric properties of Ni-Cu-Zn nanoferrites. J Mater Sci: Mater Electron 32, 19786–19797 (2021). https://doi.org/10.1007/s10854-021-06503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06503-3

Navigation