Skip to main content
Log in

Insight into the Relationship Between Structural and Electronic Properties of Bimetallic RhnPt55−n (n = 0–55) Clusters with Cuboctahedral Structure: DFT Approaches

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The relationships of structural, magnetic, and electronic properties of bimetallic RhnPt55−n (n = 0–55) clusters with cuboctahedral structure as varying compositions have been investigated using density functional theory calculations. Our results indicate that the Pt atoms tend to segregate to the surface, especially locating at the vertex site, while the Rh atoms prefer to the core site. In random alloy structures, Rh27Pt28 cluster has the lowest excess energy of −2.49 eV. However, the ordered core–shell structure, Rh13@Pt42, has much lower excess energy of −5.16 eV. In addition, our calculations have indicated that the total magnetic moments of bimetallic RhnPt55−n clusters are weakened except the Rh27Pt28 with respect to Rh55 cluster, while the average local magnetic moments of Rh and Pt atoms are mainly enhanced compared with their pure phases. As for the electronic properties, the d -band center (|ε *d |) of Rh and Pt as well as the s-, p-, d-partial density of states (s-, p-, d-PDOS) reveal the relationship between the electronic properties and structural stabilities. Meanwhile, the d-PDOS has interpreted the varying magnetic moments.

Graphical Abstract

The stable bimetallic RhnPt55−n (n = 0–55) clusters with cuboctahedral structure as varying compositions are investigated by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Sun, B. Wiley, Z.-Y. Li, and Y. Xia (2004). J. Am. Chem. Soc. 126, 9399.

    Article  CAS  Google Scholar 

  2. M. Broyer, E. Cottancin, J. Lerme, M. Pellarin, N. Del Fatti, F. Vallee, J. Burgin, C. Guillon, and P. Langot (2008). Faraday. Discuss. 138, 137.

    Article  CAS  Google Scholar 

  3. D. Zitoun, M. Respaud, M.-C. Fromen, M. J. Casanove, P. Lecante, C. Amiens, and B. Chaudret (2002). Phys. Rev. Lett. 89, 037203.

    Article  Google Scholar 

  4. T. Sondón, J. Guevara, and A. Saúl (2007). Phys. Rev. B. 75, 104426.

    Article  Google Scholar 

  5. T. Sondón and J. Guevara (2004). Physica. B: Condens. Matter. 354, 303.

    Article  Google Scholar 

  6. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289, 315.

    Article  Google Scholar 

  7. K.-W. Park, D.-S. Han, and Y.-E. Sung (2006). J. Power. Sources. 163, 82.

    Article  CAS  Google Scholar 

  8. F. H. B. Lima and E. R. Gonzalez (2008). Electrochim. Acta. 53, 2963.

    Article  CAS  Google Scholar 

  9. S. Sen Gupta and J. Datta (2006). J. Electroanal. Chem. 594, 65.

    Article  CAS  Google Scholar 

  10. J. Y. Park, Y. Zhang, S. H. Joo, Y. Jung, and G. A. Somorjai (2012). Catal. Today 181, 133.

    Article  CAS  Google Scholar 

  11. N. T. Khi, J. Yoon, H. Kim, S. Lee, B. Kim, H. Baik, S. J. Kwon, and K. Lee (2013). Nanoscale 5, 5738.

    Article  Google Scholar 

  12. Y.-W. Lee and K.-W. Park (2014). Catal. Commun. 55, 24.

    Article  CAS  Google Scholar 

  13. Q. Yuan, D.-B. Huang, H.-H. Wang, and Z.-Y. Zhou (2014). Langmuir 30, 5711.

    Article  CAS  Google Scholar 

  14. S. Alayoglu and B. Eichhorn (2008). J. Am. Chem. Soc. 130, 17479.

    Article  CAS  Google Scholar 

  15. X. Liu, D. Tian, and C. Meng (2013). Chem. Phys. 415, 179.

    Article  CAS  Google Scholar 

  16. R. A. Guirado-López and F. Aguilera-Granja (2008). J. Phys. Chem. C. 112, 6729.

    Article  Google Scholar 

  17. F. H. B. Lima, D. Profeti, W. H. Lizcano-Valbuena, E. A. Ticianelli, and E. R. Gonzalez (2008). J. Electroanal. Chem. 617, 121.

    Article  CAS  Google Scholar 

  18. J. P. I. De Souza, S. L. Queiroz, K. Bergamaski, E. R. Gonzalez, and F. C. Nart (2002). J. Phys. Chem. B 106, 9825.

    Article  Google Scholar 

  19. D. Gavril, N. A. Katsanos, and G. Karaiskakis (1999). J. Chromatogr. A 852, 507.

    Article  CAS  Google Scholar 

  20. R. Vardi, L. Rubinovich, and M. Polak (2008). Surf. Sci. 602, 1040.

    Article  CAS  Google Scholar 

  21. K. Yuge (2010). J. Phys Condens. Matter. 22, 245401.

    Article  Google Scholar 

  22. K. Yuge, A. Seko, A. Kuwabara, F. Oba, and I. Tanaka (2006). Phys. Rev. B 74, 174202.

    Article  Google Scholar 

  23. M. Polak and L. Rubinovich (2007). Phys. Rev. B 75, 045415.

    Article  Google Scholar 

  24. P. Welker, O. Wieckhorst, T. C. Kerscher, and S. Muller (2010). J. Phys Condens. Matter. 22, 384203.

    Article  CAS  Google Scholar 

  25. K. Yuge (2011). Mater. Trans. 52, 1339.

    Article  CAS  Google Scholar 

  26. K. Yuge, T. Ichikawa, and J. Kawai (2010). Mater. Trans. 51, 321.

    Article  CAS  Google Scholar 

  27. L. Wang and Q. Ge (2002). Chem. Phys. Lett. 366, 368.

    Article  CAS  Google Scholar 

  28. G. C. Koltsakis and A. M. Stamatelos (1997). Prog. Energy. Combust. Sci. 23, 1.

    Article  CAS  Google Scholar 

  29. M. Harada, K. Asakura, and N. Toshima (1994). J. Phys. Chem. 98, 2653.

    Article  CAS  Google Scholar 

  30. L. Fang, F. J. Vidal-Iglesias, S. E. Huxter, G. A. Attard, and P. B. Wells (2015). Surf. Sci. 631, 258.

    Article  CAS  Google Scholar 

  31. F. Cimini and R. Prins (1997). J. Phys. Chem. B 101, 5285.

    Article  CAS  Google Scholar 

  32. A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Phys. Rev. Lett. 71, 923.

    Article  CAS  Google Scholar 

  33. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield (1994). Phys. Rev. B 49, 12295.

    Article  CAS  Google Scholar 

  34. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103.

    Article  CAS  Google Scholar 

  35. P. Hohenberg and W. Kohn (1964). Phys. Rev. 136, B864.

    Article  Google Scholar 

  36. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.

    Article  Google Scholar 

  37. B. G. Lippert, J. H. Parrinello, and Michele (1997). Mol. Phys. 92, 477.

    Article  CAS  Google Scholar 

  38. J. VandeVondele and J. Hutter (2007). J. Chem. Phys. 127, 114105.

    Article  Google Scholar 

  39. S. Goedecker, M. Teter, and J. Hutter (1996). Phys. Rev. B 54, 1703.

    Article  CAS  Google Scholar 

  40. C. Hartwigsen, S. Gœdecker, and J. Hutter (1998). Phys. Rev. B 58, 3641.

    Article  CAS  Google Scholar 

  41. M. Krack (2005). Theor. Chem. Acc. 114, 145.

    Article  CAS  Google Scholar 

  42. J. P. Perdew, K. Burke, and Y. Wang (1996). Phys. Rev. B 54, 16533.

    Article  CAS  Google Scholar 

  43. J. Nocedal (1980). Math. Comput. 35, 773.

    Article  Google Scholar 

  44. G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.

    Article  CAS  Google Scholar 

  45. G. Kresse and J. Furthmüller (1996). Comput. Mater. Sci. 6, 15.

    Article  CAS  Google Scholar 

  46. P. E. Blöchl (1994). Phys. Rev. B 50, 17953.

    Article  Google Scholar 

  47. G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.

    Article  CAS  Google Scholar 

  48. H. J. Monkhorst and J. D. Pack (1976). Phys. Rev. B 13, 5188.

    Article  Google Scholar 

  49. J. Donohue The Structures of the Elements (Wiley, New York, 1974).

    Google Scholar 

  50. P. Villars and L. D. Calvert Pearson’s Handbook of Crystallo-graphic Data for Intermetallic Phases (ASM, Metals Park, 1985).

    Google Scholar 

  51. C. Kittel Introduction to Solid State Physics, 6th ed (Wiley, New York, 1986), p. 55.

    Google Scholar 

  52. A. V. Ruban, H. L. Skriver, and J. K. Nørskov (1999). Phys. Rev. B 59, 15990.

    Article  Google Scholar 

  53. X. Huang, Y. Su, L. Sai, J. Zhao, and V. Kumar (2015). J. Cluster. Sci. 26, 389.

    Article  CAS  Google Scholar 

  54. L. Rao, Y.-X. Jiang, B.-W. Zhang, Y.-R. Cai, and S.-G. Sun (2014). Phys. Chem. Chem. Phys. 16, 13662.

    Article  CAS  Google Scholar 

  55. A. Frenkel (2007). Z. Kristallogr. 222, 605.

    CAS  Google Scholar 

  56. D. Glasner and A. I. Frenkel (2007). XAFS13. Corf. Proc. 882, 746.

    CAS  Google Scholar 

  57. J. H. Mokkath and U. Schwingenschlögl (2013). J. Phys. Chem. C 117, 9275.

    Article  CAS  Google Scholar 

  58. C. Yu, S. Liao, and H. Deng (2007). Appl. Sur. Sci. 253, 6074.

    Article  CAS  Google Scholar 

  59. B. Hammer and J. K. Nørskov (2000). Adv. Catal. 45, 71.

    CAS  Google Scholar 

  60. J. Greeley, J. K. Nørskov, and M. Mavrikakis (2002). Annu. Rev. Phys. Chem. 53, 319.

    Article  CAS  Google Scholar 

  61. J. Zhao, X. Chen, Q. Sun, F. Liu, and G. Wang (1995). Phys. Lett. A 205, 308.

    Article  CAS  Google Scholar 

  62. J. Zhao, X. Chen, Q. Sun, F. Liu, and G. Wang (1995). EPL (Europhys. Lett.) 32, 113.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 21376013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Huang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2885 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Cheng, P., Wang, N. et al. Insight into the Relationship Between Structural and Electronic Properties of Bimetallic RhnPt55−n (n = 0–55) Clusters with Cuboctahedral Structure: DFT Approaches. J Clust Sci 27, 895–911 (2016). https://doi.org/10.1007/s10876-016-0967-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0967-1

Keywords

Navigation