Skip to main content
Log in

RETRACTED ARTICLE: First Principles Study of the Geometries, Relative Stabilities and Magnetic Properties of Bimetallic RhnOs (n = 1–9) Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

This article was retracted on 15 June 2016

Abstract

Using the density functional theory (DFT), the geometries, relative stabilities and magnetic properties of bimetallic RhnOs (n = 1–9) clusters have been investigated. The relative stability was analyzed by examining the binding energy, fragmentation energy, second-order differences of energies and HOMO–LUMO energy gaps. The obtained results indicate that RhOs, Rh3Os, Rh5Os and Rh7Os clusters are more stable than their neighboring clusters. In addition, the doping of the Os atom enhanced the stability of the Rh clusters. The chemical hardness and chemical potential show that RhOs cluster is less reactive, indicating that RhOs cluster is the most stable one among all the clusters. The magnetic properties calculations exhibited that total magnetic moments come mostly from the Rh atoms for RhnOs (n = 3–9) clusters, while the contribution of the Os atom is observed for RhOs and Rh2Os clusters. In addition, the d orbitals plays an important role in the magnetic moments of the RhnOs clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Schmid (1992). Chem. Rev. 92, 1709.

    Article  CAS  Google Scholar 

  2. L. N. Lewis (1993). Chem. Rev. 93, 2693.

    Article  CAS  Google Scholar 

  3. X. S. Xu, S. Y. Yin, R. Moro, and W. A. de Heer (2005). Phys. Rev. Lett. 95, 237209.

    Article  Google Scholar 

  4. E. K. Parks, T. D. Klots, and S. J. Riley (1990). J. Chem. Phys. 92, 3813.

    Article  CAS  Google Scholar 

  5. W. P. Halperin (1998). Rev. Mod. Phys. 58, 533.

    Article  Google Scholar 

  6. A. Soltani and A. Boudjahem (2014). Comput. Theor. Chem. 1047, 6.

    Article  CAS  Google Scholar 

  7. T. Yonezawa, K. Imamura, and N. Kimizuka (2001). Langmuir. 17, 4701.

    Article  CAS  Google Scholar 

  8. J. Y. Zhang, Q. Fang, A. J. Kenyon, and I. W. Boyd (2003). Appl. Surf. Sci. 208–209, 364.

    Google Scholar 

  9. C. D. Dong and X. G. Gong (2008). Phys. Rev. B 78, 020409.

    Article  Google Scholar 

  10. T. Teranishi and M. Miyake (1998). Chem. Mater. 10, 594.

    Article  CAS  Google Scholar 

  11. K. R. Gopidas, J. M. Whitesell, and M. A. Fox (2003). Nano. Lett. 3, 1757.

    Article  CAS  Google Scholar 

  12. K. B. Sidhpuria, H. A. Patel, P. A. Parikh, P. Bahadur, H. C. Bajaj, and R. V. Jasra (2009). Appl. Clay. Sci. 42, 386.

    Article  CAS  Google Scholar 

  13. A. Sanchez, M. Fang, A. Ahmed, and R. A. Sanchez-Dolgado (2014). Appl. Catal. A-Gen. 477, 117.

    Article  CAS  Google Scholar 

  14. C. H. Campos, E. Rosenberg, J. L. Fierro, B. F. Urbano, B. L. Rivas, C. C. Torres, and P. Reyes (2015). Appl. Catal. A-Gen. 489, 280.

    Article  CAS  Google Scholar 

  15. A. Behr, Y. Brunsch, and A. Lux (2012). Tetrahedron. Lett. 53, 2680.

    Article  CAS  Google Scholar 

  16. A. J. Bruss, M. A. Gelesky, G. Machado, and J. Dupont (2006). J. Mol. Catal. A: Chem. 252, 212.

    Article  CAS  Google Scholar 

  17. Y. Izumi, K. Konishi, M. Tsukahara, D. M. Obaid, and K. I. Aika (2007). J. Phys. Chem. C 111, 10073.

    Article  CAS  Google Scholar 

  18. D. Han, X. Li, H. Zhang, Z. Liu, G. Hu, and C. Li (2008). J. Mol. Catal. A: Chem. 283, 15.

    Article  CAS  Google Scholar 

  19. T. J. Yoon, J. I. Kim, and J. K. Lee (2003). Inorg. Chim. Acta. 345, 228.

    Article  CAS  Google Scholar 

  20. A. J. Cox, J. G. Louderback, and L. A. Bloomfield (1993). Phys. Rev. Lett. 71, 923.

    Article  CAS  Google Scholar 

  21. R. D. Adams and X. Qu (1995). Organometallics 14, 4167.

    Article  CAS  Google Scholar 

  22. C.-T. Au, C.-F. Ng, and M.-S. Liao (1999). J. Catal. 185, 12.

    Article  CAS  Google Scholar 

  23. T. Zoberbier, et al. (2012). J. Am. Chem. Soc. 134, 3073.

    Article  CAS  Google Scholar 

  24. T. W. Chamberlain, T. Zoberbier, J. Biskupek, A. Botos, U. Kaiser, and A. N. Khlobystov (2012). Chem. Sci. 3, 1919.

    Article  CAS  Google Scholar 

  25. F. M. Mendes and M. Schmal (1997). Appl. Catal. A-Gen. 163, 153.

    Article  CAS  Google Scholar 

  26. A. Trunschke, H. Ewald, D. Gutschick, H. Miessner, M. Skupin, B. Walther, and H. C. Bottcher (1989). J. Mol. Catal. 56, 95.

    Article  CAS  Google Scholar 

  27. X. Yang, D. Chen, S. Liao, H. Song, Y. Li, Z. Fu, and Y. Su (2012). J. Catal. 291, 36.

    Article  CAS  Google Scholar 

  28. S. Dennler, J. Morillo, and G. M. Pastor (2003). Surf. Sci. 532–535, 334.

    Article  Google Scholar 

  29. J. H. Mokkath and G. M. Pastor (2012). Phys. Rev. B 85, 054407.

    Article  Google Scholar 

  30. A. K. Srivastava and N. Misra (2014). Comput. Theor. Chem. 1047, 1.

    Article  CAS  Google Scholar 

  31. J. Lv, X. Bai, J. F. Jia, X. H. Xu, and H. S. Wu (2012). Physica B. 407, 14.

    Article  CAS  Google Scholar 

  32. J. Lv, F. Q. Zhang, X. H. Xu, and H. S. Wu (2009). Chem. Phys. 363, 65.

    Article  CAS  Google Scholar 

  33. J. X. Yang, C. F. Wei, and J. J. Guo (2010). Physica. B 405, 4892.

    Article  CAS  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc. Wallingford CT, 2009.

  35. Y. Zhao and D. G. Truhlar (2006). J. Chem. Phys. 125, 194101.

    Article  Google Scholar 

  36. W. J. Stevens, H. Basch, and M. Krauss (1984). J. Chem. Phys 81, 6026.

    Article  Google Scholar 

  37. N. S. Venkataramanan (2008). J. Mol. Struct. Theochem 856, 9.

    Article  CAS  Google Scholar 

  38. J. Du, H. Wang, and G. Jiang (2007). J. Mol. Struct. Theochem 817, 47.

    Article  CAS  Google Scholar 

  39. W. Bouderbala, A. Boudjahem, and A. Soltani (2014). Mol. Phys. 112, 1789.

    Article  CAS  Google Scholar 

  40. F. A. Cotton, A. R. Chakravarty, D. A. Tocher, and T. A. Stephenson (1984). Inorg. Chim. Acta. 87, 115.

    Article  CAS  Google Scholar 

  41. C. D. Tait, J. M. Garner, J. P. Collman, A. P. Sattelberger, and W. H. Woodruff (1989). J. Am. Chem. Soc. 111, 9072.

    Article  CAS  Google Scholar 

  42. M. D. Morse (1986). Chem. Rev. 86, 1049.

    Article  CAS  Google Scholar 

  43. Z. Wu, B. Han, Z. Dai, and P. Jin (2005). Chem. Phys. Lett. 403, 367.

    Article  CAS  Google Scholar 

  44. J. Du, X. Sun, and H. Wang (2008). Int. J. Quant. Chem. 108, 1505.

    Article  CAS  Google Scholar 

  45. K. Takahashi, S. Isobe, and S. Ohnuki (2013). Chem. Phys. Lett 555, 26.

    Article  CAS  Google Scholar 

  46. K. A. Gingerich and D. L. Cocke (1972). J. Chem. Soc. Chem. Commun. 1, 536.

    Article  Google Scholar 

  47. H. Wang, H. Haouari, R. Craig, Y. Liu, J. R. Lombardi, and D. M. Lindsay (1997). J. Chem. Phys. 106, 2101.

    Article  CAS  Google Scholar 

  48. B. V. Reddy, S. K. Nayak, S. N. Khanna, B. K. Rao, and P. Jena (1999). Phys. Rev. B 59, 5214.

    Article  CAS  Google Scholar 

  49. C. H. Chien, E. Blaisten-Barojas, and M. R. Pederson (1998). Phys. Rev. A 58, 2196.

    Article  CAS  Google Scholar 

  50. Y. J. Xian, W. Cheng-Fu, and G. Jian-Jun (2010). Physica. B 405, 4892.

    Article  Google Scholar 

  51. M. R. Beltrán, F. B. Zamudio, V. Chauhan, P. Sen, H. Wang, Y. J. Ko, and K. Bowen (2013). Eur. Phys. J. D 67, 63.

    Article  Google Scholar 

  52. A. Soltani, A. Boudjahem, and M. Bettahar (2015). Int. J. Quantum. Chem.. doi:10.1002/qua.25038.

    Google Scholar 

  53. M. X. Chen and X. H. Yan (2008). J. Chem. Phys. 128, 174305.

    Article  Google Scholar 

  54. R. G. Parr and W. Yang Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Pr. Abdaoui Mohammed (Director of Applied Chemistry Laboratory).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Soltani.

Additional information

The article is being retracted at the request of the authors. This work in the article was initiated under the direction of and with the support of two senior scientists (Prof. A.-G.Boudjahem and Dr. M. Chettibi) who were consulted about and are not in concurrence with publishing this paper. The conclusions of the paper are preliminary as the research is not finalized.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, A., Bouderbala, W. & Boudjahem, Ag. RETRACTED ARTICLE: First Principles Study of the Geometries, Relative Stabilities and Magnetic Properties of Bimetallic RhnOs (n = 1–9) Clusters. J Clust Sci 27, 715–731 (2016). https://doi.org/10.1007/s10876-016-0970-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0970-6

Keywords

Navigation