Skip to main content
Log in

Magnetic Silicon Fullerenes: Experimental Exploration and Theoretical Insight

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present article summarizes progress in research on silicon clusters with encapsulated metal atoms, and specifically focuses on the recent identification of magnetic silicon fullerenes. Considering that C\(_{20}\) forms the smallest known fullerene, the Si\(_{20}\) cluster is of particular interest in this context. While the pure hollow Si\(_{20}\) cage is unstable due to the lack of \(sp^2\) hybridization, endohedral doping with a range of metal atoms has been considered to be an effective way to stabilize the cage structure. In order to seek out suitable embedded atoms for stabilizing Si\(_{20}\), a broad search has been made across elements with relatively large atomic radius. The rare earth elements have been found to be able to stabilize the Si\(_{20}\) cage in the neutral state by forming R@Si\(_{20}\) fullerene cages. Among these atoms, Eu@Si\(_{20}\) has been reported to yield a stable magnetic silicon fullerene. The central europium atom has a large magnetic moment of nearly 7.0 Bohr magnetons. In addition, based on a stable Eu\(_2\)Si\(_{30}\) tube, a magnetic silicon nanotube has been constructed and discussed. These magnetic silicon fullerenes and nanotubes may have potential applications in the fields of spintronics and high-density magnetic storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  2. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman (1990). Nature 347, 354.

    Article  Google Scholar 

  3. A. Lappas, K. Prassides, K. Vavekis, D. Arcon, R. Blinc, P. Cevc, A. Amato, R. Feyerherm, F. N. Gygax, and A. Schenck (1995). Science 267, 1799.

    Article  CAS  Google Scholar 

  4. B. Narymbetov, A. Omerzu, V. V. Kabanov, M. Tokumoto, H. Kobayashi, and D. Mihailovic (2000). Nature 407, 883.

    Article  CAS  Google Scholar 

  5. T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina (2001). Nature 413, 716.

    Article  CAS  Google Scholar 

  6. D. M. Guldi and N. Martin. In Fullerenes: From Synthesis to Optoelectronic Properties (Academic Publishers: Dordrech, The Netherlands, 2002).

    Book  Google Scholar 

  7. K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.

    Article  CAS  Google Scholar 

  8. A. J. Koblar, M. Horoi, I. Chaudhuri, T. Frauenheim, and A. A. Shvartsburg (2004). Phys. Rev. Lett. 93, 013401.

    Article  Google Scholar 

  9. M. Menon and K. R. Subbasvramy (1994). Chem. Phys. Lett. 219, 219.

    Article  CAS  Google Scholar 

  10. M. C. Piqueras, R. Crespo, E. Orti, and F. Tomas (1993). Chem. Phys. Lett. 213, 509.

    Article  CAS  Google Scholar 

  11. S. Nagase and K. Kobayashi (1991). Chem. Phys. Lett. 187, 291.

    Article  Google Scholar 

  12. X. G. Gong and Q. Q. Zheng (1995). Phys. Rev. B 52, 4756.

    Article  CAS  Google Scholar 

  13. J. Zhao, L. Ma, and B. Wen (2007). J. Phys.: Condens. Matter 19, 226208.

    Google Scholar 

  14. C. Ray, M. Pellarin, J. L. Lermé, J. L. Vialle, M. Broyer, X. Blase, P. Mélinon, P. Kéghélian, and A. Perez (1998). Phys. Rev. Lett. 80, 5365.

    Article  CAS  Google Scholar 

  15. M. Pellarin, C. Ray, J. Lermé, J. L. Vialle, M. Broyer, and P. Mélinon (2000). J. Chem. Phys. 112, 8436.

    Article  CAS  Google Scholar 

  16. M. Ohara, Y. Nakamura, Y. Negishi, K. Miyajima, A. Nakajima, and K. Kaya (2002). J. Phys. Chem. A 106, 4498.

    Article  CAS  Google Scholar 

  17. F. Tournus, B. Masenelli, P. Mélinon, X. Blase, A. Perez, M. Pellarin, M. Broyer, A. M. Flank, and P. Lagarde (2002). Phys. Rev. B 65, 165417.

    Article  Google Scholar 

  18. Q. Sun, Q. Wang, P. Jena, B. K. Rao, and Y. Kawazoe (2003). Phys. Rev. Lett. 90, 135503.

    Article  CAS  Google Scholar 

  19. S. M. Beck (1987). J. Chem. Phys. 87, 4233.

    Article  CAS  Google Scholar 

  20. S. M. Beck (1989). J. Chem. Phys. 90, 6306.

    Article  CAS  Google Scholar 

  21. H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett. 86, 1733.

    Article  CAS  Google Scholar 

  22. K. Koyasu, M. Akutsu, M. Mitsui, and A. Nakajima (2005). J. Am. Chem. Soc. 127, 4998.

    Article  CAS  Google Scholar 

  23. X. Huang, H. G. Xu, S. Lu, Y. Su, R. B. King, J. Zhao, and W. Zheng (2014). Nanoscale 6, 14617.

    Article  CAS  Google Scholar 

  24. V. Kumar and Y. Kawazoe (2001). Phys. Rev. Lett. 87, 045503.

    Article  CAS  Google Scholar 

  25. V. Kumar and Y. Kawazoe (2002). Phys. Rev. B 65, 073404.

    Article  Google Scholar 

  26. V. Kumar and Y. Kawazoe (2003). Appl. Phys. Lett. 83, 2677.

    Article  CAS  Google Scholar 

  27. H. Kawamura, V. Kumar, and Y. Kawazoe (2004). Phys. Rev. B 70, 245433.

    Article  Google Scholar 

  28. H. Kawamura, V. Kumar, and Y. Kawazoe (2005). Phys. Rev. B 71, 075423.

    Article  Google Scholar 

  29. J. Lu and S. Nagase (2003). Phys. Rev. Lett. 90, 115506.

    Article  Google Scholar 

  30. G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, and M. Menon (2003). J. Chem. Phys. 119, 7498.

    Article  CAS  Google Scholar 

  31. G. Mpourmpakis, G. E. Froudakis, A. N. Andriotis, and M. Menon (2003). Phys. Rev. B 68, 125407.

    Article  Google Scholar 

  32. L. Ma, J. J. Zhao, J. G. Wang, Q. L. Lu, L. Z. Zhu, and G. H. Wang (2005). Chem. Phys. Lett. 411, 279.

    Article  CAS  Google Scholar 

  33. L. Ma, J. J. Zhao, J. G. Wang, B. L. Wang, Q. L. Lu, and G. H. Wang (2006). Phys. Rev. B 73, 125439.

    Article  Google Scholar 

  34. Z. U. Ren, F. Li, P. Guo, and J. G. Han (2005). J. Mol. Struct. 718, 165.

  35. E. N. Koukaras, C. S. Garoufalis, and A. D. Zdetsis (2006). Phys. Rev. B 73, 235417.

    Article  Google Scholar 

  36. J. Wang, Q. M. Ma, Z. Xie, Y. Liu, and Y. C. Li (2007). Phys. Rev. B 76, 035406.

    Article  Google Scholar 

  37. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coordination Chemistry Reviews 289-290, 315.

    Article  Google Scholar 

  38. C. Xiao, J. Blundell, F. Hagelberg, and W. A. Lester Jr. (2004). Int. J. Quantum Chem. 96, 416.

    Article  CAS  Google Scholar 

  39. L. J. Guo, X. Liu, G. F. Zhao, and Y. H. Luo (2007). J. Chem. Phys. 126, 234704.

    Article  Google Scholar 

  40. J. Wang and J. G. Han (2005). J. Chem. Phys. 123, 064306.

    Article  Google Scholar 

  41. P. Guo, Z. Y. Ren, F. Wang, J. Bian, J. G. Han, and G. H. Wang (2004). J. Chem. Phys. 121, 12265.

    Article  CAS  Google Scholar 

  42. J. G. Han and F. Hagelberg (2001). Chem. Phys. 263, 255.

    Article  CAS  Google Scholar 

  43. J. G. Han and F. Hagelberg (2001). J. Mol. Struct. 549, 165.

  44. J. G. Han, C. Xiao, and F. Hagelberg (2002). Struct. Chem. 13, 173.

    Article  CAS  Google Scholar 

  45. J. G. Han, Z. Y. Ren, and B. Z. Lu (2004). J. Phys. Chem. A 108, 5100.

    Article  CAS  Google Scholar 

  46. J. G. Han (2003). Chem. Phys. 286, 181.

    Article  CAS  Google Scholar 

  47. J. Wang, Q. M. Ma, R. P. Xu, Y. Liu, and Y. C. Li (2009). Phys. Lett. A 373, 2869.

    Article  CAS  Google Scholar 

  48. H. Hammer, J. K. Norskov (1995). Nature 376, 238.

    Article  CAS  Google Scholar 

  49. R. F. Barrow, W. J. M. Gissane, and D. N. Travis (1964). Nature 201, 603.

    Article  CAS  Google Scholar 

  50. C. Majumder, A. K. Kandalam, and P. Jena,(2006). Phys. Rev. B 74, 205437.

  51. Q. Sun, Q. Wang, G. Chen, and P. Jena (2007). J. Chem. Phys. 127, 214706.

    Article  Google Scholar 

  52. B. Kiran, X. Li, H. J. Zhai, L. F. Cui, and L. S. Wang (2004). Angew. Chem. Int. Ed. 43, 2125.

    Article  CAS  Google Scholar 

  53. X. Li, B. Kiran, and L. S. Wang (2005). J. Phys. Chem. A 109, 4366.

    Article  CAS  Google Scholar 

  54. C. Xiao, F. Hagelberg, and W. A. Lester Jr. (2002). Phys. Rev. B 66, 075425.

    Article  Google Scholar 

  55. P. F. Zhang, J. G. Hana, and Q. R. Pu (2003). J. Mol. Struct. 635, 25.

  56. F. C. Chuang, Y. Y. Hsieh, C. C. Hsu, and M. A. Albao (2007). J. Chem. Phys. 127, 144313.

    Article  Google Scholar 

  57. J. Wang, Y. Liu, and Y. C. Li (2010). Phys. Lett. A 374, 2736.

    Article  CAS  Google Scholar 

  58. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wrth, L. T. Scott, M. Gelmont, D. Olevano, and B. Issendorff (2000). Nature 407, 60.

    Article  CAS  Google Scholar 

  59. M. F. Jarrold (2000). Nature 407, 26.

    Article  Google Scholar 

  60. C. Miller (1991). Science 252, 1092.

    Article  CAS  Google Scholar 

  61. K. M. Ho, A .A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold (1998). Nature 392, 582.

    Article  CAS  Google Scholar 

  62. A. A. Shvartsburg, M. F. Jarrold, B. Liu, Z. Y. Lu, C. Z. Wang, and K. M. Ho (1998). Phys. Rev. Lett. 81, 4616.

    Article  CAS  Google Scholar 

  63. B. X. Li and P. L. Cao (2000). Phys. Rev. A 62, 023201.

    Article  Google Scholar 

  64. Q. Sun, Q. Wang, T. M. Briere, V. Kumar, and Y. Kawazoe (2002). Phys. Rev. B 65, 235417.

    Article  Google Scholar 

  65. A. K. Singh, V. Kumar, and Y. Kawazoe (2005). Phys. Rev. B 71, 115429.

    Article  Google Scholar 

  66. V. Kumar, A. K. Singh, and Y. Kawazoe (2006). Phys. Rev. B 74, 125411.

    Article  Google Scholar 

  67. A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowena (2008). J. Chem. Phys. 129, 054302.

    Article  Google Scholar 

  68. J. Wang and J. H. Liu (2009). J. Comput. Chem. 30, 1103.

    Article  CAS  Google Scholar 

  69. J. Wang, Y. Liu, and Y. C. Li (2010). Phys. Chem. Chem. Phys. 12, 11428.

    Article  CAS  Google Scholar 

  70. R. L. Zhou and B. C. Pan (2007). Phys. Lett. A 368, 396.

    Article  CAS  Google Scholar 

  71. J. Bai, L. F. Cui, J. L. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, Th. Frauenheim, L. S. Wang, and X. C. Zeng (2006). J. Phys. Chem. A 110, 908.

    Article  CAS  Google Scholar 

  72. J. Bai and X. C. Zeng (2007). Nano 2, 109.

    Article  CAS  Google Scholar 

  73. S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng (2004). J. Am. Chem. Soc. 126, 13845.

    Article  CAS  Google Scholar 

  74. S. Yoo, N. Shao, C. Koehler, T. Fraunhaum, and X. C. Zeng (2006). J. Chem. Phys. 124, 164311.

    Article  Google Scholar 

  75. J. Li, J. Wang, H. Y. Zhao, and Y. Liu (2013). J. Phys. Chem. C 117, 10764.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. N. E. Davison for his help with the language. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11274089, U1331116 and 11304076), the Natural Science Foundation of Hebei Province (Grant Nos. A2012205066 and A2015205179), the Science Foundation of Hebei Education Award for Distinguished Young Scholars (Grant No. YQ2013008), and the Program for High-level Talents of Hebei Province (Grant No. A201500118). We also acknowledge partial financial support from the 973 Project in China under Grant No. 2011CB606401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, Y. Magnetic Silicon Fullerenes: Experimental Exploration and Theoretical Insight. J Clust Sci 27, 861–873 (2016). https://doi.org/10.1007/s10876-015-0959-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0959-6

Keywords

Navigation