Skip to main content
Log in

Unveiling the effects of doping small nickel clusters with a sulfur impurity

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Small free-standing Ni clusters have been widely investigated during the last decade, but not many of their derived chalcogenides, despite their interest in technology and the new prospects that the nanoscale may open. The present work uncovers the effects of the S-doping on the structural, electronic, and magnetic properties of \(\hbox {Ni}_n\), n = 1–10 clusters. Density functional theoretical calculations within the generalized gradient approximation for the exchange and correlation were conducted to explore the structural, electronic, and magnetic properties of the resulting \(\hbox {Ni}_n\hbox {S}\) chalcogenide nanoparticles. The sulfur impurity is always adsorbed on the threefold hollow sites available on the nickel host, in qualitative agreement with recent results of S adsorption on Ni(111) surfaces. S-doping tends to enlarge the average Ni–Ni inter-atomic distance but enhances the thermodynamical stability of Ni clusters. It also increases the vertical ionization energy and electron affinity. However, S-doping has a small effect on the magnetism of small Ni clusters. According to the spin-dependent HOMO–LUMO gap, most of these clusters are good candidates as molecular junctions for spin filtering at low bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tikhomirov VK, Asatryan K, Galstian TV, Vallee R, Seddon AB (2003) Philos Mag Lett 83:117–124

    Article  CAS  Google Scholar 

  2. Jain PK, Deepika KS, Saxena NS (2009) Philos Mag 89:641–650

    Article  CAS  Google Scholar 

  3. Zogg H, Arnold M (2006) Opto Electron Rev 14:33–36

    Article  CAS  Google Scholar 

  4. Ruxandra V (1997) J Mater Sci Lett 16:1833–1835

    Article  CAS  Google Scholar 

  5. Li K, Wee ATS, Lin J, Tan KL, Zhou L, Li SFY, Feng ZC, Chou HC, Kamra S, Rohatgi A (1997) J Mater Sci Mater Electron 8:125–132

    Article  CAS  Google Scholar 

  6. Hartley A, Irvine SJC (2000) J Mater Sci Mater Electron 11:569–573

    Article  CAS  Google Scholar 

  7. Mane RS, Lokhande CD (2000) Mater Chem Phys 65:1–31

    Article  CAS  Google Scholar 

  8. Köckerling M, Johrendt D, Finckh EW (1998) J Am Chem Soc 120:12297

    Article  Google Scholar 

  9. Chevrel R, Hirrien M, Sergent M (1986) Polyhedron 5:87

    Article  CAS  Google Scholar 

  10. Stiefel EI, Matsumoto K (1996) ACS Symp Ser 653:2

    Article  CAS  Google Scholar 

  11. Krebs B, Henkel G (1991) Angew Chem Int Ed Engl 30:769

    Article  Google Scholar 

  12. Harris S, Chianelli RR (1984) J Catal 86:400

    Article  CAS  Google Scholar 

  13. Prins R, de Beer VHG, Somorjai GA (1989) Catal Rev Sci Eng 31:1

    Article  CAS  Google Scholar 

  14. Paskach TJ, Schrader GL, McCarley RE (2002) J Catal 211:285

    Article  CAS  Google Scholar 

  15. Mlynarski P, Salahub DR (1991) J Chem Phys 95:6050

    Article  CAS  Google Scholar 

  16. Jellinek J, Garzón IL (1991) Z Phys D 20:239

    Article  CAS  Google Scholar 

  17. Stave MS, DePristo AE (1992) J Chem Phys 20:3386

    Article  Google Scholar 

  18. Garzón IL, Jellinek JJ (1992) In: Jena P, Khanna SN, Rao BK (eds) Physics and chemistry of fine systems, from clusters to crystals, vol 1. Kluwer Academic, Dordrecht, p 405

    Chapter  Google Scholar 

  19. López MJ, Jellinek J (1994) Phys Rev A 50:1445

    Article  Google Scholar 

  20. Menon M, Connolly J, Lathiotakis N, Andriotis A (1994) Phys Rev B 50:8903

    Article  CAS  Google Scholar 

  21. Lathiotakis NN, Andriotis AN, Menon M, Connolly J (1996) J Chem Phys 104:992

    Article  CAS  Google Scholar 

  22. Bouarab S, Vega A, Lopéz MJ, Iñiguez MP, Alonso J (1996) Phys Rev B 55:13279

    Article  Google Scholar 

  23. Castro M, Jamorski C, Salahub DR (1997) Chem Phys Lett 271:133

    Article  CAS  Google Scholar 

  24. Reuse F, Khanna SN (1995) Chem Phys Lett 234:77

    Article  CAS  Google Scholar 

  25. Nayak SK, Rao BK, Jena P (1997) J Phys Chem A 101:1072

    Article  CAS  Google Scholar 

  26. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1998) J Phys Chem A 102:1748

    Article  CAS  Google Scholar 

  27. Doye JPK, Wales DJ (1998) New J Chem 22:733

    Article  CAS  Google Scholar 

  28. Curotto E, Matro A, Freeman DL, Doll JD (1998) J Chem Phys 108:729

    Article  CAS  Google Scholar 

  29. Michaelian K, Rend N, Garz IL (1999) Phys Rev B 60:2000

    Article  CAS  Google Scholar 

  30. Xiang Y, Sun DY, Gong XG (2000) J Phys Chem A 104:2746

    Article  CAS  Google Scholar 

  31. Khanna SN, Beltran M, Jena P (2001) Phys Rev B 64:235419

    Article  Google Scholar 

  32. Michelini MC, Pis Diez R, Jubert AH (2001) Int J Quantum Chem 85:22

    Article  CAS  Google Scholar 

  33. Duan HM, Gong XG, Zheng QQ, Lin HQ (2001) J Appl Phys 89:7308

    Article  CAS  Google Scholar 

  34. Luo CL (2002) Mater Sci Eng 10:13

    CAS  Google Scholar 

  35. Ashman C, Khanna SN, Pederson MR (2003) Chem Phys Lett 368:257

    Article  CAS  Google Scholar 

  36. Grigoryan VG, Spingborg M (2004) Phys Rev B 70:205415

    Article  Google Scholar 

  37. Xie Z, Ma QM, Liu Y, Li YC (2005) Phys Lett A 342:459

    Article  CAS  Google Scholar 

  38. Aguilera-Granja JM, Montejano-Carrizales RA, Guirado-Lpez RA (2006) Phys Rev B 73:115422

    Article  Google Scholar 

  39. Deshpandre MD, Roy S, Kanhere DG (2007) Phys Rev B 76:195423

    Article  Google Scholar 

  40. Yao YH, Gu X, Ji M, Gong XG, Wang DS (2007) Phys Lett A 360:629

    Article  CAS  Google Scholar 

  41. Lee B, Lee GW (2007) J Chem Phys 127:164316

    Article  Google Scholar 

  42. Lu QL, Luo QQ, Chen LL, Wan JG (2011) Eur Phys J D 61:389

    Article  CAS  Google Scholar 

  43. Chikhaoui A, Haddab K, Bouarab S, Vega A (2011) J Phys Chem A 115:1399714005

    Article  Google Scholar 

  44. Knickelbein MB, Yang S, Riley SJ (1990) J Chem Phys 93:94

    Article  CAS  Google Scholar 

  45. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HFIII, Nandi S, Ellison GB (2002) Chem Rev 102:231

    Article  CAS  Google Scholar 

  46. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhoh M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  48. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  49. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  50. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204–7

    Article  CAS  Google Scholar 

  51. Tazibt S, Chikhaoui A, Bouarab S, Vega A (2017) J Phys Chem A 121:3768–3780

    Article  CAS  Google Scholar 

  52. Vaidya N, Indian J (1976) Pure Appl Phys 14:600

    CAS  Google Scholar 

  53. Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) Chem Phys 102:666

    CAS  Google Scholar 

  54. Wang H, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) J Chem Phys 104:3420

    Article  CAS  Google Scholar 

  55. Ahmed F, Nixon ER (1979) J Chem Phys 71:3547

    Article  CAS  Google Scholar 

  56. Soler JM, Artacho E, Gale JD, Garca A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  57. Ordejon P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441

    Article  CAS  Google Scholar 

  58. Kandaskalov D, Monceau D, Mijoule C, Damien (2013) Surf Sci 617:15–21

    Article  CAS  Google Scholar 

  59. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  60. Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Phys Rev Lett 76:1441

    Article  CAS  Google Scholar 

  61. Nagarajan V, Chandiramouli R, Sriram S, Gopinath P (2014) J Nanostruct Chem 4:87

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Algerian Ministry of Higher Education and Scientific Research via the project CNEPRU B00L02UN150120130013 and by the Junta de Castilla y León (Spain) (Project VA124G18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Chikhaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhaoui, A., Ziane, M., Tazibt, S. et al. Unveiling the effects of doping small nickel clusters with a sulfur impurity. Theor Chem Acc 137, 130 (2018). https://doi.org/10.1007/s00214-018-2320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2320-2

Keywords

Navigation