Skip to main content
Log in

A One Dimensional 3d–4f Heterometallic Chain Based on Gd3+ Nodes and Tetranuclear {Cr4(hdpta)2} Complex Ligands: Synthesis, Structure and Magnetic Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Assembly reaction of 1,3-diamino-2-hydroxy-propane-N,N,N′,N′-tetraacetic acid (H5hdpta), sodium acetate and Cr3+ ion at pH 6.7 in aqueous solution leads to the formation of Na[Cr2(hdpta)(Ac)2] (1). Single crystal X-ray analysis show that 1 bears a 3D (4,4)-connected lon framework based on mononuclear Na+ nodes and dinuclear [Cr2(hdpta)(Ac)2] complex ligands in which two Cr3+ ions are chelated by one hdpta5− and also bridged by two acetate auxiliary ligands. Further assemble of 1 with Gd3+ ions give rise to [Gd(NO3)3(H2O)4][Cr4Gd(hdpta)2(OH)4(H2O)5]·(NO3)·32H2O (2). The [Cr4Gd(hdpta)2(OH)4(H2O)5]+ cation of 2 exhibit a 1D chain structure based on [Cr4(hdpta)2(OH)4]2− complex ligands and mononuclear Gd3+ nodes. [Cr4(hdpta)2(OH)4]2− has a tetranuclear {Cr4} rectangular metal skeleton. Detailed synthesis experiments indicate heating is a simple and effective way to activate the inert Cr3+ ions to prepare oxygen-bridged Cr–Ln heterometallic compounds. Magnetic studies reveal that compound 2 shows overall antiferromagnetic interaction.

Graphical Abstract

Stepwise synthesis of a Cr–Na compound based on dinuclear {Cr2} unit and a Cr–Gd compound bearing tetranuclear {Cr4} unit are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  1. C. Benelli and D. Gatteschi (2002). Chem. Rev. 102, 2369.

    Article  CAS  Google Scholar 

  2. M. Eddaoudi, B. Moler, H. Li, B. Chen, M. O’Keeffe, and O. M. Yaghi (2001). Acc. Chem. Res. 34, 319.

    Article  CAS  Google Scholar 

  3. N. Ahmad, H. A. Younus, A. H. Chughtaiabd, and F. Verpoort (2015). Chem. Soc. Rev. 44, 9.

    Article  CAS  Google Scholar 

  4. J. L. Liu, Y. C. Chen, F. S. Guo, and M. L. Tong (2014). Coord. Chem. Rev. 281, 26.

    Article  CAS  Google Scholar 

  5. Z. Y. Li, Y. X. Wang, J. Zhu, S. Q. Liu, G. Xin, J. J. Zhang, H. Q. Huang, and C. Y. Duan (2013). Cryst. Growth Des. 13, 3429.

    Article  CAS  Google Scholar 

  6. G. Karotsis, S. Kennedy, S. J. Teat, C. M. Beavers, D. A. Fowler, J. J. Morales, M. Evangelisti, S. J. Dalgarno, and E. K. Brechin (2010). J. Am. Chem. Soc. 132, 12983.

    Article  CAS  Google Scholar 

  7. V. M. Mereacre, A. M. Ako, R. Clérac, W. Wernsdorfer, G. Filoti, J. Bartolomé, C. E. Anson, and A. K. Powell (2007). J. Am. Chem. Soc. 129, 9248.

    Article  CAS  Google Scholar 

  8. T. Kajiwara, M. Nakano, S. Takaishi, and M. Yamashita (2008). Inorg. Chem. 47, 8604.

    Article  CAS  Google Scholar 

  9. Z. Y. Li, J. Zhu, L. Di, Y. Dai, J. J. Zhang, and C. Y. Duan (2013). Inorg. Chem. Commun. 30, 58.

    Article  Google Scholar 

  10. K. C. Mondal, A. Sundt, Y. H. Lan, G. E. Kostakis, O. Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson, and A. K. Powell (2012). Angew. Chem. Int. Ed. 51, 7550.

    Article  CAS  Google Scholar 

  11. T. C. Stamatatos, S. J. Teat, W. Wernsdorfer, and G. Christou (2009). Angew. Chem. Int. Ed. 48, 521.

    Article  CAS  Google Scholar 

  12. J. Rinck, Y. Lan, C. E. Anson, and A. K. Powell (2015). Inorg. Chem. 54, 3107.

    Article  CAS  Google Scholar 

  13. X. Q. Wang, Z. Y. Li, Z. X. Zhu, J. Zhu, S. Q. Liu, J. Ni, and J. J. Zhang (2013). Eur. J. Inorg. Chem. 5153.

    Article  CAS  Google Scholar 

  14. H. Zhang, Z. Y. Li, J. Zhu, Y. X. Yu, J. Ni, B. J. Ding, D. Z. Liu, and J. J. Zhang (2013). Inorg. Chem. Commun. 37, 202.

    Article  CAS  Google Scholar 

  15. J. Rinck, G. Novitchi, L. Ungur, Y. H. Lan, W. Wernsdorfer, C. E. Anson, L. F. Chibotaru, and A. K. Powell (2010). Angew. Chem. Int. Ed. 49, 7583.

    Article  CAS  Google Scholar 

  16. H. Xiang, W. G. Lu, W. X. Zhang, and L. Jiang (2013). Dalton Trans. 42, 867.

    Article  CAS  Google Scholar 

  17. H. B. Xu, J. Li, L. Y. Zhang, X. Huang, B. Li, and Z. N. Chen (2010). Cryst. Growth Des. 10, 4101.

    Article  CAS  Google Scholar 

  18. Z. Y. Li, J. Zhu, X. Q. Wang, J. Ni, J. J. Zhang, S. Q. Liu, and C. Y. Duan (2013). Dalton Trans. 42, 5711.

    Article  CAS  Google Scholar 

  19. J. J. Zhang, S. M. Hu, S. C. Xiang, T. L. Sheng, X. T. Wu, and Y. M. Li (2006). Inorg. Chem. 45, 7173.

    Article  CAS  Google Scholar 

  20. Y. Miyashita, M. Sanada, M. Islam, N. Amir, T. Koyano, H. Ikeda, K. Fujisawa, and K. Okamoto (2005). Inorg. Chem. Commun. 8, 785.

    Article  CAS  Google Scholar 

  21. S. B. Mukkamala, R. Clerac, C. E. Anson, and A. K. Powell (2006). Polyhedron 25, 530.

    Article  CAS  Google Scholar 

  22. Y. Hou, M. A. Rodriguez, and M. Nyman (2012). Cryst. Growth Des. 12, 1422.

    Article  CAS  Google Scholar 

  23. G. M. Sheldrick SHELXS 97, Program for the Solution of Crystal Structure (University of Gottingen, Germany, 1997).

    Google Scholar 

  24. G. M. Sheldrick SHELXS 97, Program for the Refinement of Crystal Structure (University of Gottingen, Germany, 1997).

    Google Scholar 

  25. A. L. Spek PLATON, Multipurpose Crystallographic Tool (Utrecht University Utrecht, 2008).

    Google Scholar 

  26. W. W. Kuang, L. L. Zhu, L. C. Li, and P. P. Yang (2015). Eur. J. Inorg. Chem. 2245.

    Article  CAS  Google Scholar 

  27. H. Li, W. Shi, Z. Niu, J. M. Zhou, G. Xiong, L. L. Lia, and P. Cheng (2015). Dalton Trans. 44, 468.

    Article  CAS  Google Scholar 

  28. T. Tanase, Y. Yamada, K. Tanaka, T. Miyazu, M. Kato, K. Lee, Y. Sugihara, W. Mori, A. Ichimura, I. Kinoshita, Y. Yamamoto, M. Haga, Y. Sasaki, and S. Yano (1996). Inorg. Chem. 35, 6230.

    Article  CAS  Google Scholar 

  29. Topos Main Page. http://www.topos.ssu.samara.ru.

  30. H. R. Wen, J. Bao, and S. J. Liu (2015). Dalton Trans. 44, 11191.

    Article  CAS  Google Scholar 

  31. Y. M. Yue, P. F. Yan, and J. W. Sun (2015). Polyhedron 94, 90.

    Article  CAS  Google Scholar 

  32. H. Z. Kou, S. Gao, C. H. Li, D. Z. Liao, B. C. Zhou, R. J. Wang, and Y. D. Li (2002). Inorg. Chem. 41, 4756.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation of China (21071025, 21471024 and 91122031), the Fundamental Research Funds for the Central Universities (DUT15ZD118 and DUT15LK20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SQ., Dong, CL., Zhao, H. et al. A One Dimensional 3d–4f Heterometallic Chain Based on Gd3+ Nodes and Tetranuclear {Cr4(hdpta)2} Complex Ligands: Synthesis, Structure and Magnetic Properties. J Clust Sci 27, 883–894 (2016). https://doi.org/10.1007/s10876-015-0958-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0958-7

Keywords

Navigation