Skip to main content
Log in

First-Principles Calculations of Magnetism in Nanoscale Carbon Materials Confining Metal with f Valence Electrons

  • Review
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The f electrons in the unfilled shell of actinide and lanthanide display complex bonding behavior and the hybridized sp electrons in carbon could show spin polarization in finite nanostructures. Correspondingly, materials combining these two features exhibit abundant magnetic properties. In this paper, we outline our first-principles calculations on various nanoscale carbon materials confining U and Gd which are representative actinide and lanthanide, respectively. The complex interaction between f electrons and sp electrons make the induced magnetic property sensitive to metal specie and carbon confinement. Specially, (1) The magnetism could be suppressed by stronger adsorption with vacancy sites on graphene and adjusted by varying the valence state of some endohedral metallofullerenes (EMFs). (2) The magnetic coupling between metal and carbon structures could be promoted by large curvature when confinement site is carbon nanotubes and altered by the adatom defect on fullerene cages. (3) Untrivial magnetic property with large net spin and asymmetric spin distribution is obtained by confining U atom and Gd atom in one fullerene as a heteronuclear EMF. These results contribute to a systematic understanding of the magnetism in nanoscale carbon materials confining metal with f valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. P. Kissane (2009). Nucl. Eng. Des. 239, 3076–3091.

    Article  CAS  Google Scholar 

  2. G. S. Cerefice, G. H. Schmidt, and C. Keith, in 2012 GSA Annual Meeting in Charlotte (2012).

  3. A. Londono-Hurtado, I. Szlufarska, R. Bratton, and D. Morgan (2012). J. Nucl. Mater. 426, 254–267.

    Article  CAS  Google Scholar 

  4. G. Zhao, T. Wen, X. Yang, S. Yang, J. Liao, J. Hu, D. Shao, and X. Wang (2012). Dalton Trans. 41, 6182–6188.

    Article  CAS  Google Scholar 

  5. Z. Li, F. Chen, L. Yuan, Y. Liu, Y. Zhao, Z. Chai, and W. Shi (2012). Chem. Eng. J. 210, 539–546.

    Article  CAS  Google Scholar 

  6. J. Han, X. Dai, C. Cheng, M. Xin, Z. Wang, H. Ping, and R. Zhang (2013). J. Phys. Chem. C 117, 26849–26857.

    Article  CAS  Google Scholar 

  7. J. Han, X. Dai, Y. Gao, Y. Meng, and Z. Wang (2014). Phys. Chem. Chem. Phys. 16, 22784–22790.

    Article  CAS  Google Scholar 

  8. E. Durgun, S. Dag, S. Ciraci, and O. Gülseren (2003). J. Phys. Chem. B 108, 575–582.

    Article  Google Scholar 

  9. C. Chen, X. Li, D. Zhao, X. Tan, and X. Wang (2007). Colloids Surf. A 302, 449–454.

    Article  CAS  Google Scholar 

  10. C. L. Chen, X. L. Li, and X. K. Wang (2007). Radiochim. Acta 95, 261–266.

    Article  CAS  Google Scholar 

  11. F. Belloni, C. Kütahyali, V. V. Rondinella, P. Carbol, T. Wiss, and A. Mangione (2009). Environ. Sci. Technol. 43, 1250–1255.

    Article  CAS  Google Scholar 

  12. A. K. S. Deb, P. Ilaiyaraja, D. Ponraju, and B. Venkatraman (2012). J. Radioanal. Nucl. Chem. 291, 877–883.

    Article  CAS  Google Scholar 

  13. M. Xin, X. Dai, J. Han, M. Jin, C. A. Jimenez-Cruz, D. Ding, Z. Wang, and R. Zhou (2014). RSC Adv. 4, 30074–30080.

    Article  CAS  Google Scholar 

  14. T. Guo, et al. (1992). Science 257, 1661–1664.

    Article  CAS  Google Scholar 

  15. K. Jackson, E. Kaxiras, and M. R. Pederson (1994). J. Phys. Chem. 98, 7805–7810.

    Article  CAS  Google Scholar 

  16. H. Funasaka, K. Sakurai, Y. Oda, K. Yamamoto, and T. Takahashi (1995). Chem. Phys. Lett. 232, 273–277.

    Article  CAS  Google Scholar 

  17. H. Funasaka, K. Sugiyama, K. Yamamoto, and T. Takahashi (1995). J. Phys. Chem. 99, 1826–1830.

    Article  CAS  Google Scholar 

  18. M. D. Diener, C. A. Smith, and D. K. Veirs (1997). Chem. Mater. 9, 1773–1777.

    Article  CAS  Google Scholar 

  19. H. Shinohara (2000). Rep. Prog. Phys. 63, 843–892.

    Article  CAS  Google Scholar 

  20. K. Akiyama, et al. (2001). J. Am. Chem. Soc. 123, 181–182.

    Article  CAS  Google Scholar 

  21. X. Wu and X. Lu (2007). J. Am. Chem. Soc. 129, 2171–2177.

    Article  CAS  Google Scholar 

  22. I. Ivan, G. Laura, and G. E. Scuseria (2008). J. Am. Chem. Soc. 130, 7459–7465.

    Article  Google Scholar 

  23. A. Sebetci and M. Richter (2009). J. Phys. Chem. C 114, 15–19.

    Article  Google Scholar 

  24. L. Xin, L. Lin, L. Bo, W. Dongqi, Z. Yuliang, and G. Xingfa (2012). J. Phys. Chem. A 116, 11651–11655.

    Article  Google Scholar 

  25. A. A. Popov, S. Yang, and L. Dunsch (2013). Chem. Rev. 113, 5989–6113.

    Article  CAS  Google Scholar 

  26. X. Dai, Y. Meng, M. Xin, F. Wang, D. Fei, M. Jin, Z. Wang, and R. Zhang (2012). Procedia Chem. 7, 528–533.

    Article  CAS  Google Scholar 

  27. X. Dai, Y. Gao, M. Xin, Z. Wang, and R. Zhou (2014). J. Chem. Phys. 141, 244306.

    Article  Google Scholar 

  28. X. Dai, J. Han, Y. Gao, and Z. Wang (2014). Chemphyschem 15, 3871–3876.

    Article  CAS  Google Scholar 

  29. X. Dai, C. Cheng, W. Zhang, M. Xin, P. Huai, R. Zhang, and Z. Wang (2013). Sci. Rep. 3, doi:10.1038/srep01341.

  30. X. Dai, M. Xin, Y. Meng, J. Han, Y. Gao, W. Zhang, M. Jin, Z. Wang, and R. Q. Zhang (2014). Carbon 78, 19–25.

    Article  CAS  Google Scholar 

  31. X. Dai, Y. Gao, W. Jiang, Y. Lei, and Z. Wang (2015). Phys. Chem. Chem. Phys. doi:10.1039/C5CP04127A.

  32. J. Červenka, M. Katsnelson, and C. Flipse (2009). Nat. Phys. 5, 840–844.

    Article  Google Scholar 

  33. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen, A. Krasheninnikov, T. Thomson, A. Geim, and I. Grigorieva (2012). Nat. Phys. 8, 199–202.

    Article  CAS  Google Scholar 

  34. P. Lehtinen, A. Foster, Y. Ma, A. Krasheninnikov, and R. Nieminen (2004). Phys. Rev. Lett. 93, 187202.

    Article  CAS  Google Scholar 

  35. Y. Zhang, S. Talapatra, S. Kar, R. Vajtai, S. K. Nayak, and P. M. Ajayan (2007). Phys. Rev. Lett. 99, 107201.

    Article  CAS  Google Scholar 

  36. G. Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L. P. Biro, and L. Tapaszto (2014). Nature 514, 608–611.

    Article  CAS  Google Scholar 

  37. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe (1996). J. Phys. Soc. Jpn. 65, 1920–1923.

    Article  CAS  Google Scholar 

  38. J. Fernández-Rossier and J. J. Palacios (2007). Phys. Rev. Lett. 99, 177204.

    Article  Google Scholar 

  39. O. Hod and G. E. Scuseria (2008). ACS Nano. 2, 2243–2249.

    Article  CAS  Google Scholar 

  40. Y. Lei, W. Jiang, X. Dai, R. Song, B. Wang, Y. Gao, and Z. Wang (2015). Sci. Rep. 5, doi:10.1038/srep10985.

  41. N. Kaltsoyannis (2003). Chem. Soc. Rev. 32, 9–16.

    Article  CAS  Google Scholar 

  42. K. T. Moore and G. van der Laan (2009). Rev. Mod. Phys. 81, 235–298.

    Article  CAS  Google Scholar 

  43. D. Wang, W. F. van Gunsteren, and Z. Chai (2012). Chem. Soc. Rev. 41, 5836–5865.

    Article  CAS  Google Scholar 

  44. T. W. Hayton (2013). Chem. Commun. 49, 2956–2973.

    Article  CAS  Google Scholar 

  45. L. Gagliardi and B. O. Roos (2005). Nature 433, 848–851.

    Article  CAS  Google Scholar 

  46. H. S. Hu, Y. H. Qiu, X. G. Xiong, W. H. E. Schwarz, and J. Li (2012). Chem. Sci. 3, 2786–2796.

    Article  CAS  Google Scholar 

  47. M. Carboni, C. W. Abney, S. Liu, and W. Lin (2013). Chem. Sci. 4, 2396–2402.

    Article  CAS  Google Scholar 

  48. A. J. Lewis, E. Nakamaru-Ogiso, J. M. Kikkawa, P. J. Carroll, and E. J. Schelter (2012). Chem. Commun. 48, 4977–4979.

    Article  CAS  Google Scholar 

  49. J.-P. Dognon, C. Clavaguéra, and P. Pyykkö (2009). J. Am. Chem. Soc. 131, 238–243.

    Article  CAS  Google Scholar 

  50. H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, and H. Shinohara (2003). J. Am. Chem. Soc. 125, 4391–4397.

    Article  CAS  Google Scholar 

  51. B. Sitharaman, R. D. Bolskar, I. Rusakova, and L. J. Wilson (2004). Nano Lett. 4, 2373–2378.

    Article  CAS  Google Scholar 

  52. É. Tóth, R. D. Bolskar, A. Borel, G. González, L. Helm, A. E. Merbach, B. Sitharaman, and L. J. Wilson (2005). J. Am. Chem. Soc. 127, 799–805.

    Article  Google Scholar 

  53. S. G. Kang, et al. (2012). Proc. Natl. Acad. Sci. USA 109, 15431–15436.

    Article  CAS  Google Scholar 

  54. J. Meng, X. Liang, X. Chen, and Y. Zhao (2013). Integr. Biol. 5, 43–47.

    Article  CAS  Google Scholar 

  55. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov (2004). Science 306, 666–669.

    Article  CAS  Google Scholar 

  56. K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and A. Geim (2005). Proc. Natl. Acad. Sci. USA 102, 10451–10453.

    Article  CAS  Google Scholar 

  57. S. Iijima (1991). Nature 354, 56–58.

    Article  CAS  Google Scholar 

  58. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162–163.

    Article  CAS  Google Scholar 

  59. Z. Tang, M. Hasegawa, T. Shimamura, Y. Nagai, T. Chiba, Y. Kawazoe, M. Takenaka, and E. K. Iwata (1999). Phys. Rev. Lett. 82, 2532–2535.

    Article  CAS  Google Scholar 

  60. R. Telling and M. Heggie (2007). Philos. Mag. 87, 4797–4846.

    Article  CAS  Google Scholar 

  61. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. Crommie, and A. Zettl (2008). Nano Lett. 8, 3582–3586.

    Article  CAS  Google Scholar 

  62. D. W. Boukhvalov and M. I. Katsnelson (2009). Eur. Phys. J. B 68, 529–535.

    Article  CAS  Google Scholar 

  63. M. Xin, F. Wang, Y. Meng, C. Tian, M. Jin, Z. Wang, and R. Zhang (2012). J. Phys. Chem. C 116, 292–297.

    Article  CAS  Google Scholar 

  64. T. Trevethan, C. D. Latham, M. I. Heggie, P. R. Briddon, and M. J. Rayson (2014). Nanoscale 6, 2978–2986.

    Article  CAS  Google Scholar 

  65. P. W. Dunk, N. K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J. M. Poblet, H. Shinohara, C. L. Hendrickson, A. G. Marshall, and H. W. Kroto (2012). J. Am. Chem. Soc. 134, 9380–9389.

    Article  CAS  Google Scholar 

  66. M. Pepper and B. E. Bursten (1991). Chem. Rev. 91, 719–741.

    Article  CAS  Google Scholar 

  67. G. Schreckenbach, P. J. Hay, and R. L. Martin (1999). J. Comput. Chem. 20, 70–90.

    Article  CAS  Google Scholar 

  68. A. L. Kutepov (2007). J. Alloys. Compd. 444, 174–176.

    Article  Google Scholar 

  69. K. I. M. Ingram, M. J. Tassell, A. J. Gaunt, and N. Kaltsoyannis (2008). Inorg. Chem. 47, 7824–7833.

    Article  CAS  Google Scholar 

  70. P. Wåhlin, C. Danilo, V. Vallet, F. Réal, J.-P. Flament, and U. Wahlgren (2008). J. Chem. Theory Comput. 4, 569–577.

    Article  Google Scholar 

  71. P. Pyykkö (1988). Chem. Rev. 88, 563–594.

    Article  Google Scholar 

  72. M. Dolg (2002). Theor. Comput. Chem. 11, 793–862.

    Article  CAS  Google Scholar 

  73. H. Shimotani, T. Ito, Y. Iwasa, A. Taninaka, H. Shinohara, E. Nishibori, M. Takata, and M. Sakata (2004). J. Am. Chem. Soc. 126, 364–369.

    Article  CAS  Google Scholar 

  74. H. Jin, H. Yang, M. Yu, Z. Liu, C. M. Beavers, M. M. Olmstead, and A. L. Balch (2012). J. Am. Chem. Soc. 134, 10933–10941.

    Article  CAS  Google Scholar 

  75. J. Lu, et al. (2006). Chem. Phys. Lett. 425, 82–84.

    Article  CAS  Google Scholar 

  76. W. Fu, et al. (2011). J. Am. Chem. Soc. 133, 9741–9750.

    Article  CAS  Google Scholar 

  77. A. G. Starikov, O. A. Gapurenko, A. L. Buchachenko, A. A. Levin, and N. N. Breslavskaya (2008). Russ. J. Gen. Chem. 78, 793–810.

    Article  CAS  Google Scholar 

  78. L. Gagliardi, P. Pyykkö, and B. O. Roos (2005). Phys. Chem. Chem. Phys. 7, 2415–2417.

    Article  CAS  Google Scholar 

  79. M. F. Zalazar, V. M. Rayón, and A. Largo (2012). J. Phys. Chem. A 116, 2972–2977.

    Article  CAS  Google Scholar 

  80. Y. Gao, X. Dai, S.-G. Kang, C. A. Jimenez-Cruz, M. Xin, Y. Meng, J. Han, Z. Wang, and R. Zhou (2014). Sci. Rep. 4, doi:10.1038/srep05862.

  81. B. O. Roos and P.-Å. Malmqvist (2004). Phys. Chem. Chem. Phys. 6, 2919–2927.

    Article  CAS  Google Scholar 

  82. X. Wang, L. Andrews, P.-Å. Malmqvist, B. R. O. Roos, A. P. Gonçalves, C. C. Pereira, J. Marçalo, C. Godart, and B. Villeroy (2010). J. Am. Chem. Soc. 132, 8484–8488.

    Article  CAS  Google Scholar 

  83. X. Wang, L. Andrews, D. Ma, L. Gagliardi, A. P. Gonçalves, C. C. Pereira, J. Marçalo, C. Godart, and B. Villeroy (2011). J. Chem. Phys. 134, 244313.

    Article  Google Scholar 

  84. P. Pogány, A. Kovács, Z. Varga, F. M. Bickelhaupt, and R. J. M. Konings (2011). J. Phys. Chem. A 116, 747–755.

    Article  Google Scholar 

  85. D. Petti, D. Crawford, and N. Chauvin (2009). MRS Bull. 34, 40–45.

    Article  CAS  Google Scholar 

  86. C. A. Utton, F. De Bruycker, K. Boboridis, R. Jardin, H. Noel, C. Guéneau, and D. Manara (2009). J. Nucl. Mater. 385, 443–448.

    Article  CAS  Google Scholar 

  87. R. D. Hunt, T. B. Lindemer, M. Z. Hu, G. D. Del Cul, and J. L. Collins (2007). Radiochim. Acta 95, 225–232.

    Article  CAS  Google Scholar 

  88. B. P. Datta, V. L. Sant, V. A. Raman, C. S. Subbanna, and H. C. Jain (1989). Int. J. Mass Spectrom. Ion Process. 91, 241–260.

    Article  CAS  Google Scholar 

  89. H. Y. Liu, Z. F. Hou, C. H. Hu, Y. Yang, and Z. Z. Zhu (2012). J. Phys. Chem. C 116, 18193–18201.

    Article  CAS  Google Scholar 

  90. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio (1996). Nature 382, 54–56.

    Article  CAS  Google Scholar 

  91. P. M. Ajayan (1999). Chem. Rev. 99, 1787–1800.

    Article  CAS  Google Scholar 

  92. O. Gülseren, T. Yildirim, and S. Ciraci (2001). Phys. Rev. lett. 87, 116802.

    Article  Google Scholar 

  93. E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci (2003). Phys. Rev. B 67, 201401.

    Article  Google Scholar 

  94. H. Cheng, A. C. Cooper, G. P. Pez, M. K. Kostov, P. Piotrowski, and S. J. Stuart (2005). J. Phys. Chem. B 109, 3780–3786.

    Article  CAS  Google Scholar 

  95. C. De-Li, M. Lynn, W. A. Saidi, J. T. Yates, M. W. Cole, and J. J. Karl (2013). Phys. Rev. Lett. 110, 135503.

    Article  Google Scholar 

  96. J. M. L. Martin (1996). Chem. Phys. Lett. 255, 1–6.

    Article  CAS  Google Scholar 

  97. Y. Maeda, et al. (2004). J. Am. Chem. Soc. 126, 6858–6859.

    Article  CAS  Google Scholar 

  98. J. Xu, X. Lu, X. Zhou, X. He, Z. Shi, and Z. Gu (2005). Chem. Mater. 16, 2959–2964.

    Article  Google Scholar 

  99. K. Suenaga, S. Iijima, H. Kato, and H. Shinohara (2000). Phys. Rev. B 62, 1627–1630.

    Article  CAS  Google Scholar 

  100. T. Suzuki, K. Kikuchi, F. Oguri, Y. Nakao, S. Suzuki, Y. Achiba, K. Yamamoto, H. Funasaka, and T. Takahashi (1996). Tetrahedron 52, 4973–4982.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Yang Gao, Mr. Jie Han, Dr. Minsi Xin, Dr. Xing Dai, Dr. Wei Zhang, Dr. Cheng Cheng, Prof. Rui-Qin Zhang, Prof. Ping Huai and Prof. Ruhong Zhou for the stimulating discussions. We would also like to acknowledge the support of the National Science Foundation of China (under Grant Number 11374004) and the Science and Technology Development Program of Jilin Province of China (20150519021JH). Zhigang Wang also acknowledges the Fok Ying Tung Education Foundation (142001) and High Performance Computing Center of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, Z. First-Principles Calculations of Magnetism in Nanoscale Carbon Materials Confining Metal with f Valence Electrons. J Clust Sci 27, 845–860 (2016). https://doi.org/10.1007/s10876-015-0956-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0956-9

Keywords

Navigation