Skip to main content
Log in

Hydrothermal Synthesis, Structures and Properties of Two Silver-Containing Organic–Inorganic Hybrids Based on Precursor [AlW12O40]5−

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new silver-containing inorganic–organic hybrid compounds [Ag(2-MMIZ)2]6{[Ag(2-MMIZ)2]2[Ag(2-MMIZ)]2[AlW12O40]2} (1) and [Ag(2-MMIZ)2]5[AlW12O40] (2) based on Keggin polyoxometalates and Ag complex have been successfully synthesized by reaction of AgNO3, 2-MMIZ (2-methylimidazole), and the α-Na5[AlW12O40]·13H2O precursor under hydrothermal conditions, and these two compounds were well characterized by elemental analyses, IR spectrum, UV–Vis spectrum, Thermogravimetric analyses, Powder X-ray diffraction measurements and single-crystal X-ray diffraction. The structure of Compound 1 represents the first dimer anion {[Ag(2-MMIZ)2]2[Ag(2-MMIZ)]2[AlW12O40]2}6− and six free [Ag(2-MMIZ)2]+ segments as cations, among the five crystallographically independent of [Ag(2-MMIZ)] segments in 1, Ag atoms exist three types of coordination configurations including linear, triangular and T type. Compound 2 is composed of one α-Keggin polyoxoanion [AlW12O40]5− and five free [Ag(2-MMIZ)2]+ segments as cations, there is only a linear coordination mode of Ag atoms in 2. Compounds 1 and 2 show photocatalytic activity for degradation of organic dye Rhodamine-B.

Graphical Abstract

The first dimmer anion {[Ag(2-MMIZ)2]2[Ag(2-MMIZ)]2[AlW12O40]2}6− based on [Ag(2-MMIZ)]+ cations, [Ag(2-MMIZ)2]+ cations and [AlW12O40]5− polyoxoanions can be used for degradation of organic dye Rhodamine-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  2. M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. 30, 34.

    Article  Google Scholar 

  3. N. Mizuno and M. Misono (1998). Chem. Rev. 98, 199.

    Article  CAS  Google Scholar 

  4. J. T. Rhule, C. L. Hill, and D. A. Judd (1998). Chem. Rev. 98, 327.

    Article  CAS  Google Scholar 

  5. E. Coronado and C. J. Gómez-García (1998). Chem. Rev. 98, 273.

    Article  CAS  Google Scholar 

  6. P. Gouzerh and A. Proust (1998). Chem. Rev. 98, 77.

    Article  CAS  Google Scholar 

  7. J. Zhang, J. Hao, Y. G. Wei, F. P. Xiao, P. C. Yin, and L. S. Wang (2010). J. Am. Chem. Soc. 132, 14.

    Article  CAS  Google Scholar 

  8. E. F. Wilson, H. N. Miras, M. H. Rosnes, and L. Cronin (2011). Angew. Chem. Int. Ed. 50, 3720.

    Article  CAS  Google Scholar 

  9. I. A. Weinstock, J. J. Cowan, Elena M. G. Barbuzzi, H. D. Zeng and C. L. Hill (1999). J. Chem. Soc. 121, 4608.

  10. J. Q. Sha, J. Peng, Y. Q. Lan, Z. M. Su, H. J. Pang, A. X. Tian, P. P. Zhang, and M. Zhu (2008). Inorg. Chem. 47, 5145.

    Article  CAS  Google Scholar 

  11. H. I. S. Nogueira, F. A. AlmeidaPaz, P. A. F. Teixeira, and J. Klinowski (2006). J. Chem. Commun. 28, 2953.

    Article  Google Scholar 

  12. H. J. Pang, J. Peng, J. Q. Sha, A. X. Tian, P. P. Zhang, Y. Chen, and M. Zhu (2009). Mol. Struct. 921, 289.

    Article  CAS  Google Scholar 

  13. M. Zhu, P. Chen, and M. Liu (2011). ACS Nano. 5, 4529.

    Article  CAS  Google Scholar 

  14. S. J. Li, S. M. Liu, S. X. Liu, Y. W. Liu, Q. Tang, Z. Shi, S. X. Ouyang, and J. H. Ye (2012). J. Am. Chem. Soc. 134, 19716.

    Article  CAS  Google Scholar 

  15. N. Kakuta, N. Goto, H. Ohkita, and T. Mizushima (1999). J. Phys. Chem. B. 103, 5917.

    Article  CAS  Google Scholar 

  16. G. C. Lica, K. P. Browne, and Y. Y. Tong (2006). J. Chem. Soc. 17, 349.

    CAS  Google Scholar 

  17. R. J. Liu, S. W. Li, X. L. Yu, G. J. Zhang, Y. Ma, and J. N. Yao (2011). J. Mater. Chem. 21, 14917.

    Article  CAS  Google Scholar 

  18. T. McGlone, C. Streb, M. B. Fité, J. Yan, D. Gabb, D. L. Long, and L. Cronin (2011). Cryst. Growth Des. 11, 2471.

    Article  CAS  Google Scholar 

  19. C. Streb, C. Ritchie, D. L. Long, P. Kgerler, and L. Cronin (2007). Angew. Chem. Int. Ed. 119, 7723.

    Article  Google Scholar 

  20. G. G. Gao, P. S. Cheng, and T. C. W. Mak (2009). J. Am. Chem. Soc. 51, 18257.

    Article  Google Scholar 

  21. C. Streb, R. Tsunashima, D. A. MacLaren, T. McGlone, T. Akutagawa, T. Nakamura, A. Scandurra, B. Pignataro, N. Gadegaard, and L. Cronin (2009). Angew. Chem. Int. Ed. 48, 490.

    Article  Google Scholar 

  22. Y. Kikukawa, Y. Kuroda, K. Yamaguchi, and N. Mizuno (2012). Angew. Chem. Int. Ed. 51, 2434.

    Article  CAS  Google Scholar 

  23. X. L. Zhao and T. C. W. Mak (2010). Inorg. Chem. 49, 3676.

    Article  CAS  Google Scholar 

  24. D. B. Dang, Y. N. Zheng, Y. Bai, X. Y. Guo, P. T. Ma, and J. Y. Niu (2012). Cryst. Growth. 12, 385.

    Article  Google Scholar 

  25. G. Y. Luan, Y. G. Li, S. T. Wang, E. B. Wang, Z. B. Han, C. W. Hu, N. H. Hu, and H. Q. Jia (2003). Dalton Trans. 233. doi:10.1039/B208531C.

  26. N. F. M. Henry and K. Lonsdale (eds.) International Tables for X-ray Crystallography (Kynoch Press, Birmingham, 1952).

    Google Scholar 

  27. G. M. Sheldrick SHELXS-97: Programs for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  28. Oa is the oxygen atom bond to the Al atom, Ob is the bridging oxygen atom shared by two W atoms from different W3O13 clusters, Oc is the bridging oxygen atom shared by two W atoms from the same W3O13 cluster, and Od is the terminal oxygen atom combined with only one W atom.

  29. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B. 41, 244.

    Article  Google Scholar 

  30. S. T. Zheng, J. Zhang, J. M. C. Juan, D. Q. Yuan, and G. Y. Yang (2009). Angew. Chem. Int. Ed. 48, 7176.

    Article  CAS  Google Scholar 

  31. B. Gordin, J. Vaissermann, P. Herson, L. Ruhlmann, M. Verdaguer and P. Gouzerh (2005). Chem. Commun. 5624. doi:10.1039/B510434C.

  32. L. Han, P. P. Zhang, H. S. Liu, H. J. Pang, Y. Chen, and J. Peng (2010). J. Chem. Soc. 21, 81.

    CAS  Google Scholar 

  33. P. P. Zhang, J. Peng, H. J. Pang, J. Q. Sha, M. Zhu, D. D. Wang, M. G. Liu, and Z. M. Su (2011). Cryst. Growth Des. 11, 2736.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NNSF of China (Grant 21171030); NSF of Heilongjiang Province (B201012); NSF of Daqing Normal University (11ZR02) and Doctoral Scientific Research Foundation of Daqing Normal University (09ZB01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Sheng Liu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, DF., Liu, HS., Ci, CG. et al. Hydrothermal Synthesis, Structures and Properties of Two Silver-Containing Organic–Inorganic Hybrids Based on Precursor [AlW12O40]5− . J Clust Sci 26, 1557–1566 (2015). https://doi.org/10.1007/s10876-015-0850-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0850-5

Keywords

Navigation