Skip to main content
Log in

Biological Evaluation of Silver Nanoparticles Obtained from T. arjuna Bark Extract as Both Reducing and Capping Agent

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A simple, environmentally benign and cost effective method is reported to obtain silver nanoparticles (AgNPs) using aqueous solution of AgNO3 and T. Arjuna (Terminalia Arjuna) bark extract, which act as both reducing and capping agent, under microwave irradiation. The formation of AgNPs was monitored by recording optical absorption spectra for surface plasmon resonance observed at ~425 nm. The bioactive polyphenols extracted from the plant extract are responsible for reduction of Ag+ → Ag0. During the formation of AgNPs, the reaction mixture showed gradual decrease in pH and an increase in reduction potential. The powder XRD pattern of AgNPs confirmed their fcc structure. An FTIR spectrum showed the presence of plant-residues adsorbed on the surface of AgNPs, which indicates the in situ bio-capping. The TG curve of AgNPs showed ~30 % weight loss due to thermal degradation of these plant-residues. The FE-SEM images showed spherical shape of AgNPs with an average particle size of 10–15 nm. The EDX analysis confirmed the presence of Ag as a major element. The biological evaluation of AgNPs showed higher inhibitory action for both bacteria and yeast when compared to that of fungus. A very good antioxidant property was also observed for these bio-capped AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.

    Article  CAS  Google Scholar 

  2. Z. H. Zhou, S. L. Wang, W. J. Zhou, G. X. Wang, L. H. Jiang, W. Z. Li, S. Q. Song, J. G. Liu, G. Q. Sun, and Q. Xin (2003). Chem. Commun. 3, 394.

    Article  Google Scholar 

  3. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, J. Lee, S. Hu, H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho (2007). Nanomed. Nanotechnol. Biol. Med. 3, 95.

    Article  CAS  Google Scholar 

  4. M. Maillard, S. Giorgio, and M. P. Pileni (2003). J. Phys. Chem. B 107, 2466.

    Article  CAS  Google Scholar 

  5. F. Cheng, J. W. Betts, S. M. Kelly, J. Schaller, and T. Heinze (2013). Green Chem. 15, 989.

    Article  CAS  Google Scholar 

  6. B. Knoll and F. Keilmann (1999). Nature 399, 134.

    Article  CAS  Google Scholar 

  7. S. Sengupta, D. Eavarone, I. Capila, G. L. Zhao, N. Watson, and T. Kiziltepe (2005). Nature 436, 568.

    Article  CAS  Google Scholar 

  8. S. A. Vorobyova, A. I. Lesnikovich, and N. S. Sobal (1999). Colloids Surf. A 152, 375.

    Article  CAS  Google Scholar 

  9. G. Sandmann, H. Dietz, and W. Plieth (2000). J. Electroanal. Chem. 491, 78.

    Article  CAS  Google Scholar 

  10. Y. Xie, R. Ye, and H. Liu (2006). Colloids Surf. A 279, 75.

    Article  Google Scholar 

  11. S. Keki, J. Torok, and G. Deak (2000). J. Colloid Interface Sci. 229, 550.

    Article  CAS  Google Scholar 

  12. V. Bansal, R. Ramanathan, and S. K. Bhargava (2011). Aust. J. Chem. 64, 279.

    Article  CAS  Google Scholar 

  13. A. T. Le, P. T. Huy, P. D. Tam, T. Q. Huy, P. D. Cam, A. A. Kudrinskiy, and Y. A. Krutyakov (2010). Curr. Appl. Phys. 10, 910.

    Article  Google Scholar 

  14. N. M. Huang, S. Radiman, H. N. Lim, P. S. Khiew, W. S. Chiu, K. H. Lee, A. Syahida, R. Hashim, and C. H. Chia (2009). Chem. Eng. J. 155, 155.

    Article  Google Scholar 

  15. R. Venu, T. S. Ramulu, S. Anandakumar, V. S. Rani, and C. G. Kim (2011). Colloids Surf. A 384, 733.

    Article  CAS  Google Scholar 

  16. M. Saravanan and A. Nanda (2010). Colloids Surf. B 77, 214.

    Article  CAS  Google Scholar 

  17. R. Sanghi and V. Preeti (2010). Adv. Mat. Lett. 1, 193.

    Article  Google Scholar 

  18. M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar (2003). Nanotech. 14, 95.

    Article  CAS  Google Scholar 

  19. S. P. Dubey, A. D. Dwivedi, M. Lahtinen, C. Lee, Y. N. Kwon, and M. Sillanpaa (2013). Spectrochem. Acta A 103, 134.

    Article  CAS  Google Scholar 

  20. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A 339, 134.

    Article  CAS  Google Scholar 

  21. D. Philip (2009). Spectrochem. Acta A 73, 374.

    Article  Google Scholar 

  22. D. Raghunandan, B. D. Mahesh, S. Basavaraja, S. D. Balaji, S. Y. Manjunath, and A. Venkatraman (2011). J. Nanopart. Res. 13, 2021.

    Article  CAS  Google Scholar 

  23. S. Yallappa, J. Manjanna, M. A. Sindhe, N. D. Satyanarayan, S. N. Pramod, and K. Nagaraja (2013). Spectrochim. Acta A. 110, 108.

    Article  CAS  Google Scholar 

  24. M. Prasenjit, S. Mahua, and C. S. Parames (2006). Altern. Med. 6, 33.

    Google Scholar 

  25. S. Bansod and M. Rai (2008). World J. Med. Sci. 3, 81.

    Google Scholar 

  26. C. Perez, M. Paul, and P. Bazerque (1990). Acta Biol. Med. Exp. 15, 113.

    Google Scholar 

  27. G. D. Gnanajobitha, G. Annadurai, and C. Kannan (2012). IJPSR 3, 323.

    CAS  Google Scholar 

  28. S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan (2013). J. Cluster Sci. 24, 1081–1092.

    Article  CAS  Google Scholar 

  29. M. Sastry, A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, and R. Kumar (2003). Colloids Surf. B 28, 313.

    Article  Google Scholar 

  30. K. Raja, A. Saravanakumar, and R. Vijayakumar (2012). Spectrochim. Acta Part A 97, 490.

    Article  CAS  Google Scholar 

  31. J. Y. Song and B. S. Kim (2009). Bioprocess Biosyst. Eng. 32, 79.

    Article  Google Scholar 

  32. H. Y. Lin and C. C. Chou (2004). Food Res. Int. 37, 883.

    Article  CAS  Google Scholar 

  33. L. Inbathamizh, T. M. Ponnu, and E. J. Mary (2013). J. Pharm. Res. 6, 32.

    Article  CAS  Google Scholar 

  34. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade (2012). J. Appl. Microbiol. 112, 841.

    Article  CAS  Google Scholar 

  35. H. H. Lara, E. N. Garza-Trevino, L. Ixtepan-Turrent, and D. K. Singh (2011). J. Nanopart. Res. 9, 30.

    CAS  Google Scholar 

  36. R. W. Raut, N. S. Kollekar, J. R. Lakkakula, V. D. Mendhulkar, and S. B. Kashid (2010). Nano Micro Lett. 2, 106.

    Article  CAS  Google Scholar 

  37. L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, and A. Prucek (2008). J. Phys. Chem. C 112, 5825.

    Article  CAS  Google Scholar 

  38. A. Kumar, P. K. Vemula, P. M. Ajayan, and G. John (2008). Nat. Mater. 7, 236.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors convey their thanks to Dr. Michel Raj of St. Joseph College, Bangalore, Dr. Harish C Barshilia of NAL, Bangalore for providing XRD analysis and FE-SEM images respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manjanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yallappa, S., Manjanna, J. Biological Evaluation of Silver Nanoparticles Obtained from T. arjuna Bark Extract as Both Reducing and Capping Agent. J Clust Sci 25, 1449–1462 (2014). https://doi.org/10.1007/s10876-014-0722-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0722-4

Keywords

Navigation