Skip to main content
Log in

Amino Acid Functionalization of {Ni6PW9}-Based Clusters Under Hydrothermal Conditions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two novel hexa-nickel(II)-substituted Keggin-type {Ni6PW9}-based tungstophosphates [Ni6(μ 3-Tris)(en)3(Pr)(damp)(H2O)2(B-α-PW9O34)]·10H2O (1) and [Ni6(μ 3-Tris)(en)3(damp)2(H2O)2(B-α-PW9O34)]·7H2O (2) (en = ethylenediamine, Pr = CH3CH2COO, damp = 2-aminoisobutyrate, Tris = pentaerythritol) were hydrothermally synthesized and characterized by IR spectra, elemental analyses, powder X-ray diffraction, thermogravimetric analyses, and single-crystal X-ray diffraction. Crystal data for 1: orthorhombic, Pca21, a = 21.6962(7) Å, b = 20.6398(5) Å, c = 14.7825(4) Å, β = 90º, V = 6619.7(3) Å3, Z = 4; for 2: orthorhombic, Pca21, a = 21.6978(9) Å, b = 20.6658(7) Å, c = 14.7767(4) Å, β = 90º, V = 6625.9(4) Å3, Z = 4. 1 consists of a {Ni6(μ 3-Tris)(en)3(Pr)(damp)(H2O)2}9+ core and a [B-α-PW9O34]9− (PW9) unit and is covalently functionalized by one Pr and one damp, as well as en and Tris ligands. The structure of 2 is the same to 1 except that the Pr anion in 1 is substituted by the other damp ligand. Most interestingly, 1 contains four kinds of organic ligands, while 2 includes three kinds of organic ligands, which are first observed in polyoxometalate chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.-T. Zheng and G.-Y. Yang (2012). Chem. Soc. Rev. 41, 7623.

    Article  CAS  Google Scholar 

  2. A. Proust, B. Matt, R. Villanneau, G. Guillemot, P. Gouzerha, and G. Izzeta (2012). Chem. Soc. Rev. 41, 7605.

    Article  CAS  Google Scholar 

  3. O. Oms, A. Dolbecq, and P. Mialane (2012). Chem. Soc. Rev. 41, 7497.

    Article  CAS  Google Scholar 

  4. A. Sartorel, M. Bonchio, S. Campagnab, and F. Scandola (2013). Chem. Soc. Rev. 42, 2262.

    Article  CAS  Google Scholar 

  5. L. Chen, D. Shi, J. Zhao, Y. Wang, P. Ma, J. Wang, and J. Niu (2011). Cryst. Growth Des. 11, 1913.

    Article  CAS  Google Scholar 

  6. S.-T. Zheng, D.-Q. Yuan, H.-P. Jia, J. Zhang, and G.-Y. Yang (2007). Chem. Commun. 43, 1858.

    Article  Google Scholar 

  7. J.-W. Zhao, C.-M. Wang, J. Zhang, S.-T. Zheng, Z.-H. Li, and G.-Y. Yang (2008). Chem. Eur. J. 14, 9223.

    Article  CAS  Google Scholar 

  8. L.-J. Chen, J.-W. Zhao, P.-T. Ma, Q.-X. Han, J.-P. Wang, and J.-Y. Niu (2010). Inorg. Chem. Commun. 13, 50.

    Article  CAS  Google Scholar 

  9. J.-W. Zhao, D.-Y. Shi, L.-J. Chen, P.-T. Ma, J.-P. Wang, and J.-Y. Niu (2011). Cryst. Eng. Comm. 13, 3462.

    Article  CAS  Google Scholar 

  10. S.-T. Zheng, J. Zhang, and G.-Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.

    Article  CAS  Google Scholar 

  11. J.-W. Zhao, S.-T. Zheng, Z.-H. Li, and G.-Y. Yang (2009). Dalton Trans. 38, 1300.

    Article  Google Scholar 

  12. H. El Moll, A. Dolbecq, J. Marrot, G. Rousseau, M. Haouas, F. Taulelle, G. Rogez, W. Wernsdorfer, B. Keita, and P. Mialane (2012). Chem. Eur. J. 18, 3845.

    Article  Google Scholar 

  13. B. Nohra, P. Mialane, A. Dolbecq, E. Rivière, J. Marrot, and F. Sécheresse (2009). Chem. Commun. 45, 2703.

    Article  Google Scholar 

  14. J.-W. Zhao, H.-P. Jia, J. Zhang, S.-T. Zheng, and G.-Y. Yang (2007). Chem. Eur. J. 14, 10030.

    Article  Google Scholar 

  15. S.-T. Zheng, J. Zhang, and G.-Y. Yang (2008). Angew. Chem. Int. Ed. 47, 3909.

    Article  CAS  Google Scholar 

  16. S.-T. Zheng, J. Zhang, J. M. Clemente-Juan, D.-Q. Yuan, and G.-Y. Yang (2009). Angew. Chem. Int. Ed. 48, 7176.

    Article  CAS  Google Scholar 

  17. S.-T. Zheng, J. Zhang, and G.-Y. Yang (2010). J. Am. Chem. Soc. 132, 15102.

    Article  CAS  Google Scholar 

  18. X–. X. Li, S.-T. Zheng, W.-H. Fang, and G.-Y. Yang (2011). Inorg. Chem. Commun. 14, 1541.

    Article  CAS  Google Scholar 

  19. X.–. X. Li, S.-T. Zheng, J. Zhang, W.-H. Fang, G.-Y. Yang, and J. M. Clemente-Juan (2011). Chem. Eur. J. 17, 13032.

    Article  CAS  Google Scholar 

  20. L. Huang, J. Zhang, L. Cheng, and G.-Y. Yang (2012). Chem. Commun. 48, 9658.

    Article  CAS  Google Scholar 

  21. W. L. Chen, Y. G. Li, Y. Wang, E. B. Wang, and Z. M. Su (2007). Dalton Trans. 36, 4293.

    Article  Google Scholar 

  22. M. H. Alizadeh, M. Mirzaei, A. R. Salimi, and H. Razavi (2009). Mater. Res. Bull. 44, 1515.

    Article  CAS  Google Scholar 

  23. H. Eshtiagh-Hosseini and M. Mirzaei (2012). J. Cluster Sci. 23, 345.

    Article  CAS  Google Scholar 

  24. H. Y. An, E. B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.

    Article  CAS  Google Scholar 

  25. J. Liu, Y. G. Li, E. B. Wang, D. R. Xiao, L. L. Fan, Z. M. Zhang, and Y. Wang (2007). J. Mol. Struct. 837, 237.

    Article  CAS  Google Scholar 

  26. H. Y. An, E. B. Wang, Y. G. Li, Z. M. Zhang, and L. Xu (2007). Inorg. Chem. Commun. 10, 299.

    Article  CAS  Google Scholar 

  27. C. Ritchie, M. Speldrich, R. W. Gable, L. Sorace, P. Kogerler, and C. Boskovic (2011). Inorg. Chem. 50, 7004.

    Article  CAS  Google Scholar 

  28. C. Ritchie and C. Boskovic (2010). Cryst. Growth Des. 10, 488.

    Article  CAS  Google Scholar 

  29. H. Naruke, J. Iijjima, and T. Sanji (2011). Inorg. Chem. 50, 7535.

    Article  CAS  Google Scholar 

  30. J. Iijjima, H. Naruke, and T. Sanji (2012). Chem. Lett. 41, 295.

    Article  Google Scholar 

  31. G. Rousseau, O. Oms, A. Dolbecq, J. Marrot, and P. Mialane (2011). Inorg. Chem. 50, 7376.

    Article  CAS  Google Scholar 

  32. Y.-H. Wang, C.-W. Hu, E.-B. Wang, N.-H. Hu, H.-Q. Jia, and Y. Xing (2001). Chem. J. Chin. Uni. 22, 362.

    CAS  Google Scholar 

  33. Y–. Y. Zheng, R. Wen, X.-J. Kong, L.-S. Long, R.-B. Hunag, and L.-S. Zheng (2012). Dalton Trans. 41, 9871.

    Article  CAS  Google Scholar 

  34. P. J. Domaille (1990). Inorg. Synth. 27, 100.

    Google Scholar 

  35. Agilent CrysAlis PRO (Agilent Technologies, Yarnton, Oxfordshire, 2011).

    Google Scholar 

  36. G. M. Sheldrick SADABS, Program for Siemens Area Detector Absorption Corrections (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  37. G. M. Sheldrick SHELXS 97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  38. G. M. Sheldrick SHELXS 97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the NNSF of China (nos. 91122028, 21221001, 50872133, 21101055, 21301049 and U1304208), the NNSF for Distinguished Young Scholars of China (no. 20725101), and the 973 program (nos. 2014CB932101 and 2011CB932504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Wei Zhao or Guo-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, B., Yang, BF., He, H. et al. Amino Acid Functionalization of {Ni6PW9}-Based Clusters Under Hydrothermal Conditions. J Clust Sci 25, 1283–1293 (2014). https://doi.org/10.1007/s10876-014-0706-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0706-4

Keywords

Navigation