Advertisement

Journal of Cluster Science

, Volume 25, Issue 1, pp 261–275 | Cite as

Metal-to-Ligand Ratio Effect on the Size of Copper Iodide and Copper Bromide Clusters in 1,4-Bis(cyclohexylthio)butane-Spanned Coordination Polymers

  • Antoine Bonnot
  • Carsten Strohmann
  • Michael Knorr
  • Pierre D. Harvey
Original Paper

Abstract

The CuX salts (X = Br, I) react with 1,4-bis(cyclohexylthio)butane, L2, in a 1:1 ratio to form the corresponding isostructural and weakly luminescent 1D coordination polymers [(Cu2X2)(μ-L2)2] n (X = Br, 4; X = I, 3) as determined by X-ray crystallography. The previously reported reaction of CuI with 1,4-bis(phenylthio)butane, L1, in a 2:1 metal-to-ligand ratio provides a 2D polymer [(Cu4I4)(μ-L1)2] n , 1 (Knorr et al., Dalton Trans 38:948–955, 2009), where the Cu4I4 unit exhibits the common cubane structure and an intense luminescence centered at 555 and 565 nm respectively at 298 and 77 K. When CuI reacts with L2 in a 2:1 metal-to-ligand ratio, a new material 2 is formed but no X-ray structure was obtained. The intense and characteristic luminescence of polymer 2 is strongly indicative of the formation of the cubane Cu4I4 unit. The new materials have been characterized by solid-state UV–Vis rasing-angle transmittance spectroscopy, luminescence spectroscopy and emission lifetime measurements.

Graphical Abstract

Keywords

Copper halide Coordination polymer Dithioether Luminescence 

Notes

Acknowledgments

This research was supported by the CNRS, the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Centre d’Etudes des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS).

References

  1. 1.
    I.-H. Park, H. J. Kim, and S. S. Lee (2012). Cryst. Eng. Comm. 14, 4589.CrossRefGoogle Scholar
  2. 2.
    I.-H. Park and S. S. Lee (2011). Cryst. Eng. Comm. 13, 6520.CrossRefGoogle Scholar
  3. 3.
    J. Zhang, Y.-S. Xue, Y.-Z. Li, H.-B. Du, and X.-Z. You (2011). Cryst. Eng. Comm. 13, 2578.CrossRefGoogle Scholar
  4. 4.
    Y. Jin, H. J. Kim, H. Y. Lee, S. Y. Lee, W. J. Shim, S. H. Hong, and S. S. Lee (2010). Inorg. Chem. 49, 10241.CrossRefGoogle Scholar
  5. 5.
    E.-J. Kang, S. Y. Lee, H. Lee, and S. S. Lee (2010). Inorg. Chem. 49, 7510.CrossRefGoogle Scholar
  6. 6.
    C. Xie, L. Zhou, W. Feng, J. Wang, and W. Chen (2009). J. Mol. Struct. 921, 132.CrossRefGoogle Scholar
  7. 7.
    J. Y. Lee, S. Y. Lee, W. Sim, K.-M. Park, J. Kim, and S. S. Lee (2008). J. Am. Chem. Soc. 130, 6902.CrossRefGoogle Scholar
  8. 8.
    T. H. Kim, G. Park, Y. W. Shin, K.-M. Park, M. Y. Choi, and J. Kim (2008). J. Bull. Korean Chem. Soc. 29, 499.CrossRefGoogle Scholar
  9. 9.
    T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, and J. Kim (2008). Angew. Chem. Int. Ed. 47, 685.CrossRefGoogle Scholar
  10. 10.
    T. H. Kim, Y. W. Shin, S. S. Lee, and J. Kim (2007). Inorg. Chem. Commun. 10, 11.CrossRefGoogle Scholar
  11. 11.
    T. H. Kim, K. Y. Lee, Y. W. Shin, S.-T. Moon, K.-M. Park, J. S. Kim, Y. Kang, S. S. Lee, and J. Kim (2005). Inorg. Chem. Commun. 8, 27.CrossRefGoogle Scholar
  12. 12.
    P. D. Harvey and M. Knorr (2010). Macromol. Rapid Commun. 31, 808.CrossRefGoogle Scholar
  13. 13.
    H.-B. Zhu (2010). Acta Cryst. E 66, m41.CrossRefGoogle Scholar
  14. 14.
    H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, V. H. Gessner, and C. Strohmann (2009). Anorg. Allg. Chem. 635, 2099–2105.Google Scholar
  15. 15.
    S.-Y. Lee, S. Park, and S. S. Lee (2009). Inorg. Chem. 48, 11335.CrossRefGoogle Scholar
  16. 16.
    M. Jo, J. Seo, L. F. Lindoy, and S. S. Lee (2009). Dalton Trans. 31, 6096.CrossRefGoogle Scholar
  17. 17.
    J. Kim, M. R. Song, S. Y. Lee, J. Y. Lee, and S. S. Lee (2008). Eur. J. Inorg. Chem. 22, 3532.Google Scholar
  18. 18.
    Y.-C. Yang, S.-T. Lin, and W.-S. Chen (2008). J. Chem. Res. 2008, 280.CrossRefGoogle Scholar
  19. 19.
    W.-J. Shi, C.-X. Ruan, Z. Li, M. Li, and D. Li (2008). Cryst. Eng. Comm. 10, 778.CrossRefGoogle Scholar
  20. 20.
    P. R. Martinez-Alanis, V. M. Ugalde-Saldivar, and I. Castillo (2011). Eur. J. Inorg. Chem., 212.Google Scholar
  21. 21.
    E. W. Ainscough, A. M. Brodie, A. Derwahl, G. H. Freeman, and C. A. Otter (2004). Polyhedron 26, 5398.CrossRefGoogle Scholar
  22. 22.
    M. Heller and W. S. Sheldrick (2004). Z. Anorg. Allg. Chem. 630, 1869.CrossRefGoogle Scholar
  23. 23.
    M. Heller and W. S. Sheldrick (2003). Z. Anorg. Allg. Chem. 629, 1589.CrossRefGoogle Scholar
  24. 24.
    H. W. Yim, D. Rabinovich, K. C. Lam, K. Chung, J. A. Golen, and L. A. Rheingold (2003). Acta Cryst. Sec. E 59, m556.CrossRefGoogle Scholar
  25. 25.
    B. Kure, S. Ogo, D. Inoki, H. Nakai, K. Isobe, and S. Fukuzumi (2005). J. Am. Chem. Soc. 127, 14366.CrossRefGoogle Scholar
  26. 26.
    R. D. Adams, M. Huang, and S. Johnson (1998). Polyhedron 17, 2775.CrossRefGoogle Scholar
  27. 27.
    Y. Suenaga, M. Maekawa, T. Kuroda-Sowa, M. Munakata, H. Morimoto, N. Hiyama, and S. Kitagawa (1997). Anal. Sci. 13, 1047.CrossRefGoogle Scholar
  28. 28.
    L. I. Victoriano, M. T. Garland, and A. Vega (1997). Inorg. Chem. 36, 688.CrossRefGoogle Scholar
  29. 29.
    M. Munakata, L. P. Wu, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga, and S. Nakagawa (1996). J. Chem. Soc. Dalton Trans. 25, 1525.CrossRefGoogle Scholar
  30. 30.
    L. I. Victoriano and B. H. Cortes (1995). J. Coord. Chem. 36, 159.CrossRefGoogle Scholar
  31. 31.
    D. Mentzafos, A. Terzis, P. Karagiannidis, and P. Aslanidis (1989). Acta Cryst. Sec. C45, 54.CrossRefGoogle Scholar
  32. 32.
    B. Noren and A. Oskarsson (1987). Acta Chem. Scand. A41, 12.CrossRefGoogle Scholar
  33. 33.
    M. A. Tsiaggali, E. G. Andreadou, A. G. Hatzidimitriou, A. A. Pantazaki, and P. Aslanidis (2013). J. Inorg. Biochem. 121, 121.CrossRefGoogle Scholar
  34. 34.
    H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2007). Eur. J. Inorg. Chem., 1823.Google Scholar
  35. 35.
    M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2012). Inorg. Chem. 51, 9917.CrossRefGoogle Scholar
  36. 36.
    M. Knorr, F. Guyon, M. M. Kubicki, Y. Rousselin, S. M. Aly, and P. D. Harvey (2011). New J. Chem. 35, 1184.CrossRefGoogle Scholar
  37. 37.
    M. Knorr, A. Pam, A. Khatyr, C. Strohmann, M. M. Kubicki, Y. Rousselin, S. M. Aly, D. Fortin, and P. D. Harvey (2010). Inorg. Chem. 49, 5834.CrossRefGoogle Scholar
  38. 38.
    M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 38, 948.CrossRefGoogle Scholar
  39. 39.
    M. Knorr, F. Guyon, A. Khatyr, M. Allain, S. M. Aly, A. Lapprand, D. Fortin, and P. D. Harvey (2010). J. Inorg. Organomet. Polym. Mat. 20, 534.CrossRefGoogle Scholar
  40. 40.
    A. Lapprand, A. Bonnot, M. Knorr, Y. Rouselin, M. M. Kubicki, D. Fortin, and P. D. Harvey (2013). Chem. Commun. 49, 8848.CrossRefGoogle Scholar
  41. 41.
    E. Anklam (1987). Synthesis 92, 841.CrossRefGoogle Scholar
  42. 42.
    E. Anklam, K. D. Asmus, and H. Mohan (1990). J. Phys. Org. Chem. 3, 17.CrossRefGoogle Scholar
  43. 43.
    Q. Wang, X.-Y. Li, G. K. S. Prakash, G. A. Olah, D. P. Loker, and K. B. Loker (2001). ARKIVOC 116, 1649.Google Scholar
  44. 44.
    P. C. Healy, J. D. Kildea, B. W. Skelton, and A. H. White (1989). Aust. J. Chem. 42, 79.CrossRefGoogle Scholar
  45. 45.
    G. M. Sheldrick (2008). Acta Cryst. A64, 112.CrossRefGoogle Scholar
  46. 46.
    H. N. Peindy, F. Guyon, M. Knorr, and C. Strohmann (2005). Z. Anorg. Allg. Chem. 631, 2397.CrossRefGoogle Scholar
  47. 47.
    X.-H. Bu, W. Chen, W.-F. Hou, M. Du, R.-H. Zhang, and F. Brisse (2002). Inorg. Chem. 41, 3477.CrossRefGoogle Scholar
  48. 48.
    W. Lu, Z.-M. Yan, J. Dai, Y. Zhang, Q.-Y.; Zhu, D.-X. Jia, and W.-J. Guo (2005). Eur. J. Inorg. Chem., 2339.Google Scholar
  49. 49.
    S. Toyota, Y. Matsuda, S. Nagaoka, M. Oki, and H. Akashi (1996). Bull. Chem. Soc. Jpn. 69, 3115.CrossRefGoogle Scholar
  50. 50.
    C. Bellitto, F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli, G. Staulo, and E. F. Trogu (1994). Inorg. Chem. 33, 3005.CrossRefGoogle Scholar
  51. 51.
    C. R. Lucas, W. Liang, D. O. Miller, and J. N. Bridson (1997). Inorg. Chem. 36, 4508.CrossRefGoogle Scholar
  52. 52.
    A. Hameau, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2012). Inorg. Chim. Acta 388, 60.CrossRefGoogle Scholar
  53. 53.
    F. R. Knight, A. L. Fuller, A. M. Z. Slawin, and J. D. Woollins (2009). Dalton Trans. 38, 8476.CrossRefGoogle Scholar
  54. 54.
    M. Vitale, C. K. Ryu, W. E. Palke, and P. C. Ford (1994). Inorg. Chem. 33, 561.CrossRefGoogle Scholar
  55. 55.
    F. De Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, and P. C. Ford (2006). Inorg. Chem. 45, 10576.CrossRefGoogle Scholar
  56. 56.
    A. Vega and J. Y. Saillard (2004). Inorg. Chem. 43, 4012.CrossRefGoogle Scholar
  57. 57.
    S. Perruchas, C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Khalal, J. Y. Saillard, T. Gacoin, and J. P. Boilot (2011). Inorg. Chem. 50, 10682.CrossRefGoogle Scholar
  58. 58.
    E. Jalilian, R.-Z. Liao, F. Himo, and S. Lidin (2011). Mat. Res. Bull. 46, 1192.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Anorganische ChemieTechnische Universität DortmundDortmundGermany
  3. 3.Institut UTINAM UMR CNRS 6213Université de Franche-ComtéBesançonFrance

Personalised recommendations