Skip to main content
Log in

Simulated Sunlight-Driven Degradation of Rhodamine B by Porous Peanut-Like TiO2/BiVO4 Composite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Porous peanut-like TiO2/BiVO4 composite nanostructures were synthesized via a template-free hydrothermal process with bismuth nitrate, ammonium metavanadate and anatase TiO2 as raw materials. The crystal structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction, transmission electron microscope, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–visible absorption spectra. Simulated sun-light induced photocatalytic degradation of Rhodamine B by porous peanut-like TiO2/BiVO4 nanostructures in the absence and presence of H2O2 has been investigated, and the results show these porous composite nanostructures with higher photocatalytic activity than pure BiVO4 and anatase TiO2. When TiO2/BiVO4 heterostructures were used as the photocatalysts under simulated sun-light irradiation, BiVO4 could act as a sensitizer to absorb the visible light. Meanwhile, coupling different band-gap semiconductors of TiO2 and BiVO4, the compound facilitate separation of the photogenerated carriers under the internal field induced by the different electronic band structures of semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Doerffler and K. Hauffe (1964). J. Catal. 3, 156–170.

    Article  CAS  Google Scholar 

  2. M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69–96.

    Article  CAS  Google Scholar 

  3. S. S. Thind, G. S. Wu, and A. C. Chen (2012). Appl. Catal. B 111–112, 38–45.

    Google Scholar 

  4. T. L. Thompson and J. T. Yates Jr (2006). Chem. Rev. 106, 4428–4453.

    Article  CAS  Google Scholar 

  5. E. M. Rodríguez, G. Fernández, P. M. Álvarez, R. Hernández, and F. J. Beltrán (2011). Appl. Catal. B 102, 572–583.

    Article  Google Scholar 

  6. H. Liu, M. Y. Wang, Y. Wang, Y. G. Liang, W. R. Cao, and Y. Su (2011). J. Photochem. Photobiol. A 223, 157–164.

    Article  CAS  Google Scholar 

  7. J. Thomas and M. Yoon (2012). Appl. Catal. B 111–112, 502–508.

    Google Scholar 

  8. Y. C. Zhang, Z. N. Du, K. W. Li, M. Zhang, and D. D. Dionysiou (2011). ACS Appl. Mater. Interfaces 3, 1528–1537.

    Article  CAS  Google Scholar 

  9. Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, and H. Li (2008). J. Phys. Chem. C 112, 6258–6262.

    Article  CAS  Google Scholar 

  10. C. H. Han, Z. Y. Li, and J. Y. Shen (2009). J. Hazard. Mater. 168, 215–219.

    Article  CAS  Google Scholar 

  11. J. Xu, W. Z. Wang, S. Sun, and L. Wang (2012). Appl. Catal. B 111–112, 126–132.

    Google Scholar 

  12. Y. Liu, F. Xin, F. Wang, S. Luo, and X. Yin (2010). J. Alloys Compd. 498, 179–184.

    Article  CAS  Google Scholar 

  13. E. V. Skorb, E. A. Ustinovich, A. I. Kulak, and D. V. Sviridov (2008). J. Photochem. Photobiol. A 193, 97–102.

    Article  CAS  Google Scholar 

  14. L. Huang, F. Peng, H. J. Wang, H. Yu, and Z. Li (2009). Catal. Commun. 10, 1839–1843.

    Article  CAS  Google Scholar 

  15. Z. D. Meng, L. Zhu, J. G. Choi, C. Y. Park, and W. C. Oh (2011). Nanoscale Res. Lett. 6, 459–469.

    Article  Google Scholar 

  16. A. P. Zhang, J. Z. Zhang, N. Y. Cui, X. Y. Tie, Y. W. An, and L. J. Li (2009). J. Mol. Catal. A 304, 28–32.

    Article  CAS  Google Scholar 

  17. W. I. F. David and I. G. Wood (1983). J. Phys. C 16, 5149–5166.

    Article  CAS  Google Scholar 

  18. K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, and O. Yamaguchi (1992). Mater. Res. Bull. 27, 823–830.

    Article  CAS  Google Scholar 

  19. K. Shantha and K. B. R. Varma (1999). Mater. Sci. Eng. B 60, 66–75.

    Article  Google Scholar 

  20. A. Galembeck and O. L. Alves (2000). Thin Solid Films 365, 90–93.

    Article  CAS  Google Scholar 

  21. T. Yang and D. Xia (2009). J. Cryst. Growth 311, 4505–4509.

    Article  CAS  Google Scholar 

  22. H. M. Zhang, J. B. Liu, H. Wang, W. X. Zhang, and H. Yan (2008). J. Nanopart. Res. 10, 767–774.

    Article  CAS  Google Scholar 

  23. X. Zhang, Y. Zhang, X. Quan, and S. Chen (2009). J. Hazard. Mater. 167, 911–914.

    Article  CAS  Google Scholar 

  24. M. Shang, W. Wang, L. Zhou, S. Sun, and W. Yin (2009). J. Hazard. Mater. 172, 338–344.

    Article  CAS  Google Scholar 

  25. X. Zhang, Z. An, F. Jia, L. Zhang, X. Fan, and Z. Zou (2007). Mater. Chem. Phys. 103, 162–167.

    Article  CAS  Google Scholar 

  26. G. C. Xi and J. H. Ye (2010). Chem. Commun. 46, 1893–1895.

    Article  CAS  Google Scholar 

  27. L. Zhang, D. R. Chen, and X. L. Jiao (2006). J. Phys. Chem. B 110, 2668–2673.

    Article  CAS  Google Scholar 

  28. Y. F. Sun, Y. Xie, C. Z. Wu, S. D. Zhang, and S. S. Jiang (2010). Nano Res. 3, 620–631.

    Article  CAS  Google Scholar 

  29. L. Ren, L. L. Ma, L. Jin, J. B. Wang, M. Q. Qiu, and Y. Yu (2009). Nanotechnology 20, 9–405602.

    Google Scholar 

  30. G. S. Li, D. Q. Zhang, and J. C. Yu (2008). Chem. Mater. 20, 3983–3992.

    Article  CAS  Google Scholar 

  31. G. Q. Zhu, and W. X. Que. (2012) J. Cluster Sci. doi:10.1007/s10876-012-0531-6.

  32. Z. J. Li, W. Z. Shen, W. S. He, and X. T. Zu (2008). J. Hazard. Mater. 155, 590–594.

    Article  CAS  Google Scholar 

  33. J. Yu, Y. Zhang, and A. Kudo (2009). J. Solid State Chem. 182, 223–228.

    Article  CAS  Google Scholar 

  34. H. B. Li, G. C. Liu, S. G. Chen, Q. C. Liu, and W. M. Lu (2011). Phys. E 43, 1323–1328.

    Article  CAS  Google Scholar 

  35. A. Martínez-de la Cruz and U. M. G. Pérez (2010). Mater. Res. Bull. 45, 135–141.

    Article  Google Scholar 

  36. Z. J. Zhang, W. Z. Wang, M. Shang, and W. Z. Yin (2010). Catal. Commun. 11, 982–986.

    Article  CAS  Google Scholar 

  37. F. J. Benitez, J. R. Francisco, L. A. Juan, and C. Garcia (2006). J. Hazard. Mater. 138, 278–287.

    Article  CAS  Google Scholar 

  38. Y. P. Zhao, J. Y. Hu, and W. Jin (2010). Environ. Sci. Technol. 42, 99–104.

    Google Scholar 

  39. S. Kaniou, K. Pitarakis, I. Barlagianni, and I. Poulios (2005). Chemosphere 60, 372–380.

    Article  CAS  Google Scholar 

  40. M. Hojamberdiev, G. Q. Zhu, A. Eminov, and K. Okada (2012). J. Cluster. Sci. doi:10.1007/s10876-012-0522-7.

  41. L. Q. Guo, F. Chen, X. Q. Fan, W. D. Cai, and J. L. Zhang (2010). Appl. Catal. B 96, 162–168.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, B., Peng, J. & Xu, Y. Simulated Sunlight-Driven Degradation of Rhodamine B by Porous Peanut-Like TiO2/BiVO4 Composite. J Clust Sci 24, 771–785 (2013). https://doi.org/10.1007/s10876-013-0571-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0571-6

Keywords

Navigation