Skip to main content
Log in

Covalent Bonding in Au(BO) 2 and Au(BS) 2

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We perform in this work a comprehensive first-principles investigation on the geometric and electronic structures of Au(BO) 2 and Au(BS) 2 which are valent isoelectronic to the well-known Au(CN) 2 monoanion. Au(BO) 2 and Au(BS) 2 complexes prove to possess linear ground-state structures similar to Au(CN) 2 and the BO and BS ligands in them are found to be coordinated terminally via boron atoms to gold centers which are weakly negatively charged. Au–B bonds in Au(BO) 2 and Au(BS) 2 appear to have higher Wiberg bond indices (0.79 and 0.80) and more covalent components (60 and 53 %) than the corresponding values of Au–C interaction in Au(CN) 2 (0.67 and 39 %, respectively) at the same theoretical levels. Their Au–B bifurcation values of the electronic localization function also turn out to be higher than Au–C. These results strongly suggest that the Au–B bonds in Au(BO) 2 and Au(BS) 2 with multiple-bond character possess stronger covalent characters than Au–C in Au(CN) 2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. J. Gorin and F. D. Toste (2007). Nature 446, 395.

    Article  CAS  Google Scholar 

  2. T. Okabayashi, E. Y. Okabayashi, F. Koto, T. Ishida, and M. Tanimoto (2009). J. Am. Chem. Soc. 131, 11712.

    Article  CAS  Google Scholar 

  3. X.-B. Wang, Y.-L. Wang, J. Yang, X.-P. Xing, J. Li, and L.-S. Wang (2009). J. Am. Chem. Soc. 131, 16368.

    Article  CAS  Google Scholar 

  4. H.-J. Zhai, C. Bürgel, V. Bonacic-Koutecky, and L.-S. Wang (2008). J. Am. Chem. Soc. 130, 9156.

    Article  CAS  Google Scholar 

  5. D. Schröder, R. Brown, P. Schwerdtfeger, X.-B. Wang, X. Yang, L.-S. Wang, and H. Schwarz (2003). Angew. Chem. Int. Ed. 42, 311.

    Article  Google Scholar 

  6. H.-T. Liu, X.-G. Xiong, P. D. Dau, Y.-L. Wang, J. Li, and L.-S. Wang (2011). Chem. Sci. 2, 2101.

    Article  CAS  Google Scholar 

  7. P. Pyykkö (2004). Angew. Chem. Int. Ed. 43, 4412.

    Article  Google Scholar 

  8. L.-S. Wang (2010). Phys. Chem. Chem. Phys. 12, 8694.

    Article  CAS  Google Scholar 

  9. H.-J. Zhai, L.-M. Wang, S.-D. Li, and L.-S. Wang (2007). J. Phys. Chem. A 111, 1030.

    Article  CAS  Google Scholar 

  10. H.-J. Zhai, S.-D. Li, and L.-S. Wang (2007). J. Am. Chem. Soc. 129, 9254.

    Article  CAS  Google Scholar 

  11. S.-D. Li, H.-J. Zhai, and L.-S. Wang (2008). J. Am. Chem. Soc. 130, 2573.

    Article  CAS  Google Scholar 

  12. W.-Z. Yao, J.-C. Guo, H.-G. Lu, and S.-D. Li (2009). J. Phys. Chem. A 113, 2561.

    Article  CAS  Google Scholar 

  13. D Yu Zubarev and A. I. Boldyrev (2007). J. Phys. Chem. A 111, 1648.

    Article  CAS  Google Scholar 

  14. H. Braunschweig, K. Radacki, and A. Schneider (2010). Science 328, 345.

    Article  CAS  Google Scholar 

  15. X. Li, B. Kiran, J. Li, H.-J. Zhai, and L.-S. Wang (2002). Angew. Chem. Int. Ed. 41, 4786.

    Article  CAS  Google Scholar 

  16. B. B. Averkiev and Ph D Dissertation Utah State University (Logan, Utah, 2009).

    Google Scholar 

  17. A. D. Becke (1993). J Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  19. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  20. J. Cizek (1969). Adv. Chem. Phys. 14, 35.

    Article  CAS  Google Scholar 

  21. G. D. Purvis III and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910.

    Article  CAS  Google Scholar 

  22. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III (1988). J. Chem. Phys. 89, 7382.

    Article  CAS  Google Scholar 

  23. G. E. Scuseria and H. F. Schaefer III (1989). J. Chem. Phys. 90, 3700.

    Article  CAS  Google Scholar 

  24. J. A. Pople, M. Head-Gordon, and K. Raghavachari (1987). J. Chem. Phys. 87, 5968.

    Article  CAS  Google Scholar 

  25. M. Dolg, H. Stoll, H. Preuss, and R. M. Pitzer (1993). J. Phys. Chem. 97, 5852.

    Article  CAS  Google Scholar 

  26. T. H. Dunning Jr (1989). J. Chem. Phys. 90, 1007.

    Article  CAS  Google Scholar 

  27. D. E. Woon and T. H. Dunning Jr (1993). J. Chem. Phys. 98, 1358.

    Article  CAS  Google Scholar 

  28. M. J. Frisch, G. W. Trucks, and H. B. Schlegel, et al., Gaussian 09, Revision, A.1 (Pittsburgh: Gaussian, Inc., 2009).

  29. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  30. R. F. W. Bader Atoms in molecules–a Quantum theory (Oxford University Press, Oxford, 1990).

    Google Scholar 

  31. A. D. Becke and K. E. Edgecombe (1990). J. Chem. Phys. 92, 5397.

    Article  CAS  Google Scholar 

  32. A. Savin, J. Flad, H. Preuss, O. Jepsen, O. K. Andersen, and H. G. von Schnering (1992). Angew. Chem. 104, 186.

    Article  CAS  Google Scholar 

  33. S. Noury, X. Krokidis, F. Fuster, and B. Silvi TOPMOD Package (Universite Pierre et Marie Curie, Paris, 1997).

    Google Scholar 

  34. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

  35. R. F. W. Bader, AIMPAC. http://www.chemistry.mcmaster.ca/aimpac/.

  36. C. F. Matta, AIMDELOC: Program to calculate AIM localization and delocalization indices. (http://www.chem.utoronto.ca/~cmatta/).

  37. P. Pyykkö and M. Atsumi (2009). Chem. Eur. J. 15, 12770.

    Article  Google Scholar 

  38. K. B. Wiberg (1968). Tetrahedron 24, 1083.

    Article  CAS  Google Scholar 

  39. D. Cremer and E. Kraka (1984). Angew. Chem. Int. Ed. 23, 627–628.

    Article  Google Scholar 

  40. X. Fradera, M. A. Austen, and R. F. W. Bader (1999). J. Phys. Chem. A 103, 304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 20873117) and Shanxi Science Foundation (No. 2010011012-3). SDL sincerely thanks Prof. Jun Li at Tsinghua University for inspiration discussions on the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Gang Lu or Si-Dian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, CQ., Lu, HG. & Li, SD. Covalent Bonding in Au(BO) 2 and Au(BS) 2 . J Clust Sci 24, 233–241 (2013). https://doi.org/10.1007/s10876-012-0546-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0546-z

Keywords

Navigation