Skip to main content
Log in

First Principles Calculations of Electric Field Effect on the (6,0) Zigzag Single-Walled Silicon Carbide Nanotube for use in Nano-Electronic Circuits

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled silicon carbide nanotube (SiCNT) was studied under the parallel and transverse electric fields with strengths 0–140 × 10−4 a.u. by using density functional calculations. Analysis of the structural parameters indicates that resistance of the nanotube against the applied parallel electric field is more than resistance of the nanotube against the applied transverse electric field. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag SiCNT show increases with any increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not change significantly with any increasing in the electric field strength. The energy gap of the nanotube increases with any increases in the electric field strength and its reactivity is decreased. Increase of the ionization potential, electron affinity, chemical potential, and HOMO and LOMO in the nanotube with increase of the applied external electric field strengths indicates that the properties of SiCNTs can be controlled by the proper external electric field for use in nano-electronic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ijima (1991). Nature 354, 56–58.

    Article  Google Scholar 

  2. V. Derycke, R. Martel, J. Appenzeller, and Ph Avouris (2002). Appl. Phys. Lett. 80, 2773–2775.

    Article  CAS  Google Scholar 

  3. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus (1999). Science 286, 1127–1129.

    Article  CAS  Google Scholar 

  4. B. Zurek and J. Autschbach (2004). J. Am. Chem. Soc. 126, 13079.

    Article  Google Scholar 

  5. A. Nojeh, G. W. Lakatos, S. Peng, K. Cho, and R. F. W. Pease (2003). Nano Lett. 3, 1187–1190.

    Article  CAS  Google Scholar 

  6. V. Linssa, T. Halma, W. Hoyera, F. Richtera, and N. Schellb (2003). Vacuum 70, 1–9.

    Article  Google Scholar 

  7. X.-H. Sun, C.-P. Li, W.-K. Wong, N.-B. Wong, C.-S. Lee, S.-T. Lee, and B.-T. Teo (2002). J. Am. Chem. Soc. 124, 14464.

    Article  Google Scholar 

  8. K. M. Alam and A. K. Ray (2009). J Nanopart .Res. 11, 1405–1420.

    Article  CAS  Google Scholar 

  9. A. Wu, Q. Song, L. Yang, and Q. Hao (2011). Comput. Theor. Chem. 977, 92–96.

    Article  Google Scholar 

  10. K. M. Alam and A. K. Ray (2007). Nanotechnology 18, 495706.

    Article  Google Scholar 

  11. M. Zhao, Y. Xia, R. Q. Zhang, and S. T. Lee (2005). J .Chem. Phys. 122, 214707.

    Article  Google Scholar 

  12. Y. Miyamoto and B. D. Yu (2002). Appl. Phys. Lett. 80, 586–588.

    Article  CAS  Google Scholar 

  13. K. H. Khoo, M. S. C. Mazzoni, and S. G. Louie (2004). Phys. Rev. B 69, 201401(R).

    Article  Google Scholar 

  14. G. Y. Guo, S. Ishibashi, T. Tamura, and K. Terakura (2007). Phys. Rev. B 75, 245403.

    Article  Google Scholar 

  15. C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio (2007). Phys. Status Solid. B 244, 4288–4292.

    Article  CAS  Google Scholar 

  16. M. T. Baei, A. Ahmadi Peyghan, and M. Moghimi (2012). J .Mol. Model. 18, 4477–4489.

    Article  CAS  Google Scholar 

  17. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, 2065–2091.

    Article  CAS  Google Scholar 

  18. K. K. Hazarika, N. C. Baruah, and R. C. Deka (2009). Struct. Chem. 20, 1079.

    Article  CAS  Google Scholar 

  19. R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922–1924.

    Article  CAS  Google Scholar 

  20. H. Sabzyan and D. Farmanzadeh (2007). J. Comput. Chem. 28, 923–931.

    Article  Google Scholar 

  21. M. Schmidt, et al. (1993). J. Comput. Chem. 14, 1347–1363.

    Article  CAS  Google Scholar 

  22. P. Politzer, P. Lane, J. S. Murray, and M. C. Concha (2005). J. Mol. Model. 11(1), 1.

    Article  CAS  Google Scholar 

  23. Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O’Connor, and P. Politzer (2003). Nano Lett. 3(1), 21–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 360 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyghan, A.A., Baei, M.T., Hashemian, S. et al. First Principles Calculations of Electric Field Effect on the (6,0) Zigzag Single-Walled Silicon Carbide Nanotube for use in Nano-Electronic Circuits. J Clust Sci 24, 591–604 (2013). https://doi.org/10.1007/s10876-012-0524-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0524-5

Keywords

Navigation