Skip to main content
Log in

A Theoretical Study on Electronically Excited States of the Hydrogen-Bonded Clusters for Fluorenone and Fluorenone Derivatives in Methanol Solvent

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The time-dependent density functional theory (TDDFT) method has been carried out to study the hydrogen-bonding of fluorenone (FN) and FN derivatives (FODs) in hydrogen-donating methanol solvent. The ground-state geometry structure optimizations, electronic excitation energies and corresponding oscillation strengths of the low-lying electronically excited states for the isolated FN, FODs and methanol monomers and their corresponding complexes have been calculated using DFT and TDDFT methods respectively. Comparing FODs with FN, we have obtained the strength change of the hydrogen bonds and the electronic spectral shift in different excited states. At the same time, the nature of the FODs in the electronic excited states and the influence of the different substituent group have been summed up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. L. Han and G. J. Zhao Hydrogen Bonding and Transfer in the Excited State (Wiley, Chichester, 2010).

    Book  Google Scholar 

  2. G. J. Zhao and K. L. Han (2012). Acc. Chem. Res. 45, 404.

    Article  CAS  Google Scholar 

  3. R. D. Adams, Q. Zhang, and X. Z. Yang (2011). J. Am. Chem. Soc. 133, 15950.

    Article  CAS  Google Scholar 

  4. J. Zeng, N. S. Hush, and J. R. Reimers (1996). J. Phys. Chem. 100, 9561.

    Article  CAS  Google Scholar 

  5. X. Z. Yang (2012). J. Clust. Sci. doi:10.1007/s10876-012-0479-6.

  6. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.

    Article  CAS  Google Scholar 

  7. R. D. Adams, W. C. Pearl Jr, Y. Wong, Q. Zhang, M. B. Hall, and J. R. Walensky (2011). J. Am. Chem. Soc. 133, 12994.

    Article  CAS  Google Scholar 

  8. J. E. Del Bene (1984). J. Mol. Struc. 108, 179.

    Article  Google Scholar 

  9. J. E. Del Bene (1988). J. Phys. Chem. 92, 2874.

    Article  Google Scholar 

  10. W. B. Person, J. E. Del Bene, W. Szajda, K. Szczepaniak, and M. Szczesniak (1991). J. Phys. Chem. 95, 2770.

    Article  CAS  Google Scholar 

  11. J. E. Del Bene (1994). J. Phys. Chem. 98, 5902.

    Article  Google Scholar 

  12. J. E. Del Bene, W. B. Person, and K. Szczepaniak (1995). J. Phys. Chem. 99, 10705.

    Article  Google Scholar 

  13. J. E. Del Bene and M. J. T. Jordan (2001). J. Mol. Struc. 573, 11.

    Article  Google Scholar 

  14. J. R. Reimers and N. S. Hush (1995). Chem. Phys. 197, 323.

    Article  CAS  Google Scholar 

  15. J. R. Reimers and N. S. Hush (1995). J. Am. Chem. Soc. 117, 1302.

    Article  CAS  Google Scholar 

  16. N. S. Hush and J. R. Reimers (2000). Chem. Rev. 100, 775.

    Article  CAS  Google Scholar 

  17. J. R. Reimers and N. S. Hush (1996). J. Am. Chem. Soc. 208, 117.

    Google Scholar 

  18. M. Pietrzak, M. F. Shibl, M. Bröring, O. Kühn, and H. H. Limbach (2007). J. Am. Chem. Soc. 129, 296.

    Article  CAS  Google Scholar 

  19. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.

    Article  CAS  Google Scholar 

  20. G. J. Zhao and K. L. Han (2008). ChemPhysChem. 9, 1842.

    Article  CAS  Google Scholar 

  21. G. J. Zhao and K. L. Han (2008). J. Comput. Chem. 29, 2010.

    Article  CAS  Google Scholar 

  22. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.

    Article  CAS  Google Scholar 

  23. J. E. Del Bene (1973). J. Am. Chem. Soc. 95, 6517.

    Article  Google Scholar 

  24. J. E. Del Bene (1973). J. Am. Chem. Soc. 95, 5460.

    Article  Google Scholar 

  25. J. E. Del Bene and W. L. Kochenour (1976). J. Am. Chem. Soc. 98, 2041.

    Article  Google Scholar 

  26. J. E. Del Bene (1978). J. Am. Chem. Soc. 100, 1387.

    Article  Google Scholar 

  27. J. E. Del Bene (1978). J. Am. Chem. Soc. 100, 1395.

    Article  Google Scholar 

  28. J. E. Del Bene (1978). J. Am. Chem. Soc. 100, 5285.

    Article  Google Scholar 

  29. Y. Liu, J. Ding, D. Shi, and J. Sun (2008). J. Phys. Chem. A 112, 6244.

    Article  CAS  Google Scholar 

  30. X. Z. Yang (2011). ACS Catal. 1, 849.

    Article  CAS  Google Scholar 

  31. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 4788.

    Article  CAS  Google Scholar 

  32. S. Woutersen, U. Emmerichs, and H. J. Bakker (1997). Science 278, 658.

    Article  CAS  Google Scholar 

  33. Z. L. Cai and J. R. Reimers (2002). J. Phys. Chem. A 106, 8769.

    Article  CAS  Google Scholar 

  34. P. Hamm, M. Lim, and R. M. Hochstrasser (1998). Phys. Rev. Lett. 81, 5326.

    Article  CAS  Google Scholar 

  35. L. Biczók, T. Bérces, and H. Linschitz (1997). J. Am. Chem. Soc. 119, 11071.

    Article  Google Scholar 

  36. T. S. Chu, Y. Zhang, and K. L. Han (2006). Int. Rev. Phys. Chem. 25, 201.

    Article  CAS  Google Scholar 

  37. C. H. Tao and V. W. W. Yam (2009). J. Photochem. Photobiol. C 10, 130.

    Article  CAS  Google Scholar 

  38. J. L. Sessler, M. Sationsatham, C. T. Brown, T. A. Rhodes, and G. Wiederrecht (2001). J. Am. Chem. Soc. 123, 655.

    Article  Google Scholar 

  39. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.

    Article  CAS  Google Scholar 

  40. N. P. Wells, M. J. MeGrath, J. I. Siepmann, D. F. Underwood, and D. A. Blank (2008). J. Phys. Chem. A 112, 2511.

    Article  CAS  Google Scholar 

  41. A. C. Benniston and A. Harriman (2006). Chem. Soc. Rev. 35, 169.

    Article  CAS  Google Scholar 

  42. R. D. Adams and M. Chen (2012). Organometallics 31, 445.

    Article  CAS  Google Scholar 

  43. D. K. Palit, T. Q. Zhang, S. Kumazaki, and K. Yoshihara (2003). J. Phys. Chem. A 107, 10798.

    Article  CAS  Google Scholar 

  44. G. J. Zhao, K. L. Han, and P. J. Stang (2009). J. Chem. Theory Comput. 5, 1955.

    Article  CAS  Google Scholar 

  45. G. Fischer, Z. L. Cai, J. R. Reimers, and P. Wormell (2003). J. Phys. Chem. A 107, 3093.

    Article  CAS  Google Scholar 

  46. R. D. Adams, M. Chen, and X. Z. Yang (2012). Organometallics 31, 3588.

    Article  CAS  Google Scholar 

  47. G. J. Zhao and K. L. Han (2007). J. Chem. Phys. 127, 024306.

    Article  Google Scholar 

  48. M. K. Shukla and J. Leszczynski (2008). J. Phys. Chem. B. 112, 5139.

    Article  CAS  Google Scholar 

  49. K. L. Han and G. Z. He (2007). J. Photochem. Photobiol. C 8, 55.

    Article  CAS  Google Scholar 

  50. M. Glasbeek and H. Zhang (2004). Chem. Rev. 104, 1929.

    Article  CAS  Google Scholar 

  51. G. Zhao, F. Yu, M. Zhang, B. Northrop, H. Yang, K. Han, and P. Stang (2011). J. Phys. Chem. A 115, 6390.

    Article  CAS  Google Scholar 

  52. M. X. Zhang and G. J. Zhao (2012). ChemSusChem. 5, 879.

    Article  CAS  Google Scholar 

  53. N. V. Belkova, E. S. Shubina, and L. M. Epstein (2005). Acc. Chem. Res. 38, 624.

    Article  CAS  Google Scholar 

  54. Z. L. Cai and J. R. Reimers (2007). J. Phys. Chem. A 111, 954.

    Article  CAS  Google Scholar 

  55. L. Pauling, R. B. Corey, and H. R. Branson (1951). PNAS. 37, 205.

    Article  CAS  Google Scholar 

  56. L. P. Kuhn (1952). J. Am. Chem. Soc. 74, 2492.

    Article  CAS  Google Scholar 

  57. W. V. E. Doering, R. G. Buttery, R. G. Laughlin, and N. Chaudhuri (1956). J. Am. Chem. Soc. 78, 3224.

    Article  CAS  Google Scholar 

  58. J. Donohue (1952). J. Phys. Chem. 56, (502), 17.

    Google Scholar 

  59. S. L. Johnson and K. A. Rumon (1965). J. Phys. Chem. 69, 74.

    Article  CAS  Google Scholar 

  60. B. I. Stepanov (1946). Nature 157, 808.

    Article  CAS  Google Scholar 

  61. T. Gramstad (1963). Spectrochim. Acta 19, 829.

    Article  CAS  Google Scholar 

  62. D. Sicinska, D. G. Truhlar, and P. Paneth (2001). J. Am. Chem. Soc. 123, 7683.

    Article  CAS  Google Scholar 

  63. S. K. Sahoo and M. Baral (2009). J. Photochem. Photobiol. C 10, 1.

    Article  CAS  Google Scholar 

  64. F. Yu, P. Li, G. Li, G. Zhao, T. Chu, and K. Han (2011). J. Am. Chem. Soc. 133, 11030.

    Article  CAS  Google Scholar 

  65. L. Serrano-Andres and M. Merchan (2009). J. Photochem. Photobiol. C 10, 21.

    Article  CAS  Google Scholar 

  66. H. Zhang and S. C. Smith (2007). J. Theor. Comput. Chem. 6, 789.

    Article  CAS  Google Scholar 

  67. G. J. Zhao, B. H. Northrop, K. L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007.

    Article  CAS  Google Scholar 

  68. L. Jin, J. Zhai, L. Heng, T. Wei, L. Wen, L. Jiang, X. Zhao, and X. J. Zhang (2009). J. Photochem. Photobiol. C 10, 149.

    Article  CAS  Google Scholar 

  69. T. O. Harju, A. H. Huizer, and C. Varma (1995). Chem. Phys. 200, 215.

    Article  CAS  Google Scholar 

  70. T. G. Kim, M. F. Wolford, and M. R. Topp (2003). Photochem. Photobiol. Sci. 2, 576.

    Article  CAS  Google Scholar 

  71. A. Maciejewski, J. Kubicki, and K. Dobek (2005). J. Phys. Chem. B 109, 9422.

    Article  CAS  Google Scholar 

  72. A. L. Estrada, J. E. Yarnell, and D. C. Neckers (2011). Phys. Chem. A 115, 6366.

    Article  CAS  Google Scholar 

  73. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.

    Article  CAS  Google Scholar 

  74. C. Yun, J. You, J. Kim, J. Huh, and E. Kim (2009). J. Photochem. Photobiol. C 10, 111.

    Article  CAS  Google Scholar 

  75. J. S. Richardson, E. D. Getzoff, and D. C. Richardson (1978). PNAS. 75, 2574.

    Article  CAS  Google Scholar 

  76. R. W. Seymour, G. M. Estes, and S. L. Cooper (1970). Macromolecules 3, 579.

    Article  Google Scholar 

  77. P. L. Yeagle and R. B. Martin (1976). Biochem. Bioph. Res. Co. 69, 775.

    Article  CAS  Google Scholar 

  78. T. Ignasiak, O. P. Strausz, and D. S. Montgomery (1977). Fuel 56, 359.

    Article  CAS  Google Scholar 

  79. S. Yamabe and K. Morokuma (1975). J. Am. Chem. Soc. 97, 4458.

    Article  CAS  Google Scholar 

  80. J. Figueras (1971). J. Am. Chem. Soc. 93, 3255.

    Article  CAS  Google Scholar 

  81. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  82. A. Schasfer, C. Huber, and R. Ahlrichs (1994). J. Chem. Phys. 100, 5829.

    Article  Google Scholar 

  83. R. J. Cave and M. D. Newton (1996). Chem. Phys. Lett. 249, 15.

    Article  CAS  Google Scholar 

  84. N. S. Hush (1967). Prog. Inorg. Chem. 8, 391.

    Article  CAS  Google Scholar 

  85. J. R. Reimers and N. S. Hush (1991). J. Phys. Chem. 95, 9773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Zhang, X. & Zhang, W. A Theoretical Study on Electronically Excited States of the Hydrogen-Bonded Clusters for Fluorenone and Fluorenone Derivatives in Methanol Solvent. J Clust Sci 24, 471–483 (2013). https://doi.org/10.1007/s10876-012-0516-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0516-5

Keywords

Navigation