Skip to main content
Log in

Effects of Hydrogen Bonding on the Transition Properties of Ethanol–Water Clusters: A TD-DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, time-dependent density functional theory method was used to study the electronic transitions of hydrogen-bonded ethanol–water complexes Dimer-I, Dimer-II and Trimer. The intermolecular hydrogen bonds H1···O1 and O···H2 were demonstrated by the optimized geometric structures of the three hydrogen-bonded ethanol–water complexes. It is demonstrated that the S1-state electronic transitions for ethanol monomer and the hydrogen-bonded complex Dimer-I (through HB-I) should be of LE nature on the ethanol molecule, while those of complexes Dimer-II and Trimer should be of CT character from the hydrogen-bonded water molecule (through HB-II) to the ethanol moiety. The different electronic transition types should be the reasons for the tiny redshift of the S1-state electronic energy for Dimer-I and the large blueshifts for Dimer-II and the Trimer compared with that of the ethanol monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. D. Buckingham, J. E. Del Bene, and S. A. C. McDowell (2008). Chem. Phys. Lett. 463, 1.

    Article  CAS  Google Scholar 

  2. J. E. Del Bene (1978). J. Am. Chem. Soc. 100, 1395.

    Article  Google Scholar 

  3. J. E. Del Bene (1980). Chem. Phys. 50, 1.

    Article  Google Scholar 

  4. J. E. Del Bene (1981). J. Comput. Chem. 2, 422.

    Article  Google Scholar 

  5. J. E. Del Bene (1981). J. Comput. Chem. 2, 188.

    Article  Google Scholar 

  6. J. E. Del Bene (1982). J. Phys. Chem. 86, 1341.

    Article  Google Scholar 

  7. J. E. Del Bene (1983). J. Comput. Chem. 4, 226.

    Article  Google Scholar 

  8. J. E. Del Bene (1984). J. Mol. Strut. 108, 179.

    Article  Google Scholar 

  9. J. E. Del Bene (1988). J. Phys. Chem. 92, 2874.

    Article  Google Scholar 

  10. W. B. Person, J. E. Del Bene, W. Szajda, K. Szczepaniak, and M. Szczesniak (1991). J. Phys. Chem. 95, 2770.

    Article  CAS  Google Scholar 

  11. J. E. Del Bene (1994). J. Phys. Chem. 98, 5902.

    Article  Google Scholar 

  12. J. E. Del Bene, W. B. Person, and K. Szczepaniak (1995). J. Phys. Chem. 99, 10705.

    Article  Google Scholar 

  13. J. E. Del Bene and M. J. T. Jordan (2001). J. Mol. Struc. 573, 11.

    Article  Google Scholar 

  14. M. K. Ahmed, S. Ali, and E. Wojcik (2012). Spectrosc. Lett. 45, 420.

    Article  CAS  Google Scholar 

  15. S. M. Mejia, E. Florez, and F. Mondragon (2012). J. Chem. Phys. 136, 144306.

    Article  Google Scholar 

  16. J. R. Reimers and Z. L. Cai (2012). Phys. Chem. Chem. Phys. 14, 8791.

    Article  CAS  Google Scholar 

  17. S. Alavi, S. Takeya, R. Ohmura, T. K. Woo, and J. A. Ripmeester (2010). J. Chem. Phys. 133, 074505.

    Article  Google Scholar 

  18. S. Alavi, R. Ohmura, and J. A. Ripmeester (2011). J. Chem. Phys. 134, 054702.

    Article  Google Scholar 

  19. S. Burikov, T. Dolenko, S. Patsaeva, Y. Starokurov, and V. Yuzhakov (2010). Mol. Phys. 108, 2427.

    Article  CAS  Google Scholar 

  20. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.

    Article  CAS  Google Scholar 

  21. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.

    Article  CAS  Google Scholar 

  22. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 9218.

    Article  CAS  Google Scholar 

  23. G. J. Zhao and K. L. Han (2008). ChemPhysChem 9, 1842.

    Article  CAS  Google Scholar 

  24. K.-L. Han and G.-J. Zhao, Hydrogen Bonding and Transfer in the Excited State (Wiley, Chichester, UK, 2010, ISBN: 978-0-470-66677-7), pp. 1–1072.

  25. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.

    Article  CAS  Google Scholar 

  26. Y.-F. Liu, D.-P. Yang, D.-H. Shi, and J.-F. Sun (2011). J. Comput. Chem. 32, 3475.

    Article  CAS  Google Scholar 

  27. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.

    Article  CAS  Google Scholar 

  28. M.-X. Ma and D.-P. Yang (2012). J. Cluster Sci. 23, 155.

    Article  CAS  Google Scholar 

  29. G.-J. Zhao and K.-L. Han (2012). Acc. Chem. Res. 45, 404.

    Article  CAS  Google Scholar 

  30. B. M. Wong and T. H. Hsieh (2010). J. Chem. Theory Comput. 6, 3704.

    Article  CAS  Google Scholar 

  31. M. J. G. Peach, E. I. Tellgren, P. Sałek, T. Helgaker, and D. J. Tozer (2007). J. Phys. Chem. A 111, 11930.

    Article  CAS  Google Scholar 

  32. M. P. Balanay and D. H. Kim (2011). J. Phys. Chem. C 115, 19424.

    Article  CAS  Google Scholar 

  33. B. M. Wong, M. Piacenza, and F. D. Sala (2009). Phys. Chem. Chem. Phys. 11, 4498.

    Article  CAS  Google Scholar 

  34. W.-W. Zhao, Y.-H. Ding, and Q.-Y. Xia (2011). J. Comput. Chem. 32, 545.

    Article  CAS  Google Scholar 

  35. J. Tomasi, B. Mennucci, and R. Cammi (2005). Chem. Rev. 105, 2999.

    Article  CAS  Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowskiand, and D. J. Fox Gaussian 09, Revision A02 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  37. P. A. Hunt, B. Kirchner, and T. Welton (2006). Chem. Eur. J. 12, 6762.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of China; Grant No. 124200510013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Wang, H. Effects of Hydrogen Bonding on the Transition Properties of Ethanol–Water Clusters: A TD-DFT Study. J Clust Sci 24, 485–495 (2013). https://doi.org/10.1007/s10876-012-0514-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0514-7

Keywords

Navigation