Skip to main content
Log in

Synthesize and Characterization of Ca2CuO3 Nanostructures via a Modified Sol–Gel Method Assisted by Hydrothermal Process

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A sol–gel-hydrothermal method was used to prepare the highly homogeneous nanopowder of Ca2CuO3 ceramic with an average diameter of about 20–30 nm. In comparison with the conventional sol–gel process, this method caused the more purity product with smaller size of particle due to a high pressure and long reaction time. Photoluminescence measurement indicated that for Ca2CuO3 nanoparticles there are two emission peaks: one sharp band at about 400 nm and one broad visible emission band. The band gap energy of Ca2CuO3 nanoparticles has been estimated to be 3.09 eV that is far above the values reported earlier. The results showed that the morphology and particle size of the synthesized samples can be obviously affected by the reaction temperature and molar ratio (w) between citric acid and calcium nitrate. In this procedure, diethylene glycol monobutyl ether was used as both the solvent and the modest surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. G. Lisunov, E. Arushanov, B. Raquet, J. M. Broto, F. C. Chou, N. Wizent, and G. Behr (2006). J. Phys. Matter 18, 8541.

    Article  CAS  Google Scholar 

  2. E. Bordas, C. Graaf, R. Caballol, and C. J. Calzado (2006). Theor. Chem. Acc. 116, 535.

    Article  CAS  Google Scholar 

  3. K. Yamada, J. Wada, S. Hosoya, Y. Endoh, S. Noguchi, S. Kawamata, and K. Okuda (1995). Physica C 253, 135.

    Article  CAS  Google Scholar 

  4. S. Kondoh, K. Fukuda, and M. Sato (1988). Solid State Commun. 65, 1163.

    Article  Google Scholar 

  5. A. Keren, K. Kojima, L. P. Le, G. M. Luke, W. D. Wu, Y. J. Uemura, S. Tajima, and S. Uchida (1995). J. Mag. Mag. Mat. 140–144, 1641.

    Article  Google Scholar 

  6. A. C. Walters, T. G. Perring, J.-S. Caux, A. T. Savici, G. D. Gu, C.-C. Lee, W. Ku, and I. A. Zaliznyak (2009). Nat. Phys. 5, 867.

    Article  CAS  Google Scholar 

  7. A. S. Monayenkova, A. A. Popova, L. A. Tiphlova, Y. V. Gorushkina, A. V. Tsoi, I. P. Romanova, and V. A. Alyoshin (2005). Thermo. Acta 430, 83.

    Article  CAS  Google Scholar 

  8. N. N. Hoang, T. H. Nguyen, and C. Nguyen (2008). J. Appl. Phys. 103, 093524.

    Article  Google Scholar 

  9. E. Dagotto (1999). Rep. Prog. Phys. 62, 1525.

    Article  CAS  Google Scholar 

  10. M. Ohtani, T. Makino, K. Yamamoto, Y. Segawab, T. Fukumura, H. Sakurada, J. Nishimura, H. Koinuma, and M. Kawasaki (2004). Appl. Surf. Sci. 223, 133.

    Article  CAS  Google Scholar 

  11. D. C. Huynh, D. T. Ngo, and N. N. Hoang (2007). J. Phys. 19, 106215.

    Google Scholar 

  12. N. N. Hoang, D. C. Huynh, T. T. Nguyen, D. T. Nguyen, D. T. Ngo, M. Finnie, and C. Nguyen (2008). Appl. Phys. A 92, 715.

    Article  CAS  Google Scholar 

  13. S. Alikhanzadeh Arani, M. Salavati Niasari, and M. Almasi Kashi (2012). J. Inorg. Organomet. Polym.. doi:10.1007/s10904-012-9687-7.

    Google Scholar 

  14. L. C. Pathak and S. K. Mishra (2005). Supercond. Sci. Technol. 18, R67.

    Article  CAS  Google Scholar 

  15. M. Salavati-Niasari, M. Farhadi-Khouzani, and F. Davar (2009). J. Sol–Gel Sci. Technol. 52, 321.

    Article  CAS  Google Scholar 

  16. M. Salavati-Niasari, F. Davar, and H. Emadi (2010). Chalcogenide Lett. 7, 647.

    CAS  Google Scholar 

  17. X. Xu, J. Wang, J. Tian, X. Wang, J. Dai, and X. Liu (2011). Ceram. Int. 37, 2201.

    Article  CAS  Google Scholar 

  18. Z. Chen and X. He (2010). J. Alloys Compd. 497, 312.

    Article  CAS  Google Scholar 

  19. G. M. Zhang, W. J. Mai, F. Y. Li, Z. X. Bao, R. C. Yu, T. Q. Lu, J. Liu, and C. Q. Jin (2003). Phys. Rev. B 67, 212102.

    Article  Google Scholar 

  20. Y. D. Hou, L. Hou, T. T. Zhang, M. K. Zhu, H. Wang, and H. Yan (2007). J. Am. Ceram. Soc. 90, 1738.

    Article  CAS  Google Scholar 

  21. N. N. Hoang, T. T. Nguyen, H. V. Bui, and D. T. Nguyen (2009). J. Raman Spectrosc. 40, 170.

    Article  CAS  Google Scholar 

  22. K. Maiti, D. D. Sarma, T. Mizokawa, and A. Fujimori (1998). Phys. Rev. B 57, 1572.

    Article  CAS  Google Scholar 

  23. A. Sobhani, F. Davar, and M. Salavati-Niasari (2011). Appl. Surf. Sci. 257, 7982.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Council of Islamic Azad University (Science and Research Branch of Tehran), University of Kashan for supporting this work by Grant No (159271/1) and Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alikhanzadeh-Arani, S., Salavati-Niasari, M. Synthesize and Characterization of Ca2CuO3 Nanostructures via a Modified Sol–Gel Method Assisted by Hydrothermal Process. J Clust Sci 23, 1069–1080 (2012). https://doi.org/10.1007/s10876-012-0499-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0499-2

Keywords

Navigation