Skip to main content
Log in

Self-Assembly, Crystal Structure and Analysis of Intermolecular Interactions of the Supramolecular Compound Based on Hexamolybdochromate(III), Sulfate and Piperazine

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new supramolecular compound based on Anderson-B hexamolybdochromate, (H2Pz)3[Cr(OH)6Mo6O18H](SO4)2·12H2O (1) (Pz = piperazine) was synthesized and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction (Mo Kα). The compound crystallizes in monoclinic system, P21/c space group with a = 13.5708(6) Å, b = 17.3711(8) Å, c = 22.2387(9) Å, β = 110.631(2)°; V = 4906.3(4) Å3, Z = 4, D c  = 2.290 g/cm3, F(000) = 3364.0; μ = 1.905, S = 1.033. The final R = 0.0398 and wR = 0.0971. The H2pz2+ ions and sulfate anions in 1 are arranged through hydrogen bonds into a hexagonal network in [202] plane and hexamolybdochromates anions (CrMo6) fill in the hexagonal vacancies. The networks stack in such a way that each anion links two sulfate ions from adjacent networks via hydrogen bonds with short (CrMo6)O···OSO3 distances of 2.637–2.697 Å. A lot of hydrogen bonds are formed between water molecules, sulfate, H2pz2+ ions and CrMo6 anions, which are the dominating force constructing the supramolecular structure. Hirshfeld surface analysis of 1 gives us the details of intermolecular interactions in the crystals of 1 in a visual manner and shows that the CrMo6 anion acts as a stronger hydrogen bond donor than as an acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. L. Hill and X. Zhang (1995). Nature 373, 324.

    Article  CAS  Google Scholar 

  2. D. Hagrman, C. Zubieta, D. J. Rose, J. Zubieta, and R. Haushalter (1997). Angew. Chem. Int. Ed. 36, 873.

    Article  CAS  Google Scholar 

  3. G. S. Kim, H. Zeng, J. T. Rhule, I. A. Weinstock, and C. L. Hill (1999). Chem. Commun. 1651.

  4. C. L. Hill (Guest ed) (1998) Chem. Rev. (Special issue on Polyoxometalates) 98, 1.

  5. K. Fukaya and T. Yamase (2003). Angew. Chem. Int. Ed. 115, 678.

    Google Scholar 

  6. P. Kögerler and L. Cronin (2005). Angew. Chem. Int. Ed. 117, 866.

    Google Scholar 

  7. N. Malek, T. Maris, M. Simard, and J. D. Wuest (2005). J. Am. Chem. Soc. 127, 5910.

    Article  CAS  Google Scholar 

  8. K. Uemura, K. Saito, S. Kitagawa, and H. Kita (2006). J. Am. Chem. Soc. 128, 16122.

    Article  CAS  Google Scholar 

  9. S. Upreti and A. Ramanan (2005). Cryst. Growth Des. 5, 1837.

    Article  CAS  Google Scholar 

  10. H. An, Y. Li, E. Wang, D. Xiao, C. Sun, and L. Xu (2005). Inorg. Chem. 44, 6062.

    Article  CAS  Google Scholar 

  11. Y.-Q. Lan, S.-L. Li, X.-L. Wang, K.-Z. Shao, Z.-M. Su, and E.-B. Wang (2008). Inorg. Chem. 47, 529.

    Article  CAS  Google Scholar 

  12. S. Yin, H. Sun, Y. Yan, W. Li, and L. Wu (2009). J. Phys. Chem. B. 113, 2355.

    Article  CAS  Google Scholar 

  13. Y.-M. Xie, Q.-S. Zhang, Z.-G. Zhao, X.-Y. Wu, S.-C. Chen, and C.-Zg. Lu (2008). Inorg. Chem. 47, 8086.

    Article  CAS  Google Scholar 

  14. V. Shivaiah, M. Nagaraju, and S. K. Das (2003). Inorg. Chem. 42, 6604.

    Article  CAS  Google Scholar 

  15. H. An, Y. Li, D. Xiao, E. Wang, and C. Sun (2006). Cryst. Growth Des. 6, 1107.

    Article  CAS  Google Scholar 

  16. W. Bu, H. Li, H. Sun, S. Yin, and L. Wu (2005). J. Am. Chem. Soc. 127, 8016.

    Article  CAS  Google Scholar 

  17. M. Schulz-Dobrick and M. Jansen (2007). Inorg. Chem. 46, 4380.

    Article  CAS  Google Scholar 

  18. X. D. Yang, Y. G. Chen, M. Mirzaei, A. R. Salimi, and F. Yao (2009). Inorg. Chem. Commun. 12, 195.

    Article  CAS  Google Scholar 

  19. M. A. Spackman and P. G. Byrom (1997). Chem. Phys. Lett. 267, 215.

    Article  CAS  Google Scholar 

  20. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman (1998). Chem. Eur. J. 4, 2136.

    Article  CAS  Google Scholar 

  21. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell (2004). Acta. Crystallogr. B 60, 627.

    Article  Google Scholar 

  22. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D.Jayatilaka, and M. A. Spackman (2006) CrystalExplorer 1.5. University of Western Australia, Perth.

  23. C. Wroe Wolfe, M. Block, and L. C. W. Baker (1955). J. Am. Chem. Soc. 77, 2200.

    Article  Google Scholar 

  24. A. Perloff (1970). Inorg. Chem. 9, 2228.

    Article  CAS  Google Scholar 

  25. G. M. Sheldrick SHELXL 97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  26. G. M. Sheldrick SHELXL 97, Program for Crystal Structure Refinement (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  27. K. Jayaraman, A. Choudhury, and C. N. R. Rao (2002). Solid State Sci. 4, 413.

    Article  CAS  Google Scholar 

  28. M. Singh, S. E. Lofland, K. V. Ramanujachary, and A. Ramanan (2010). Cryst. Growth Des. 10, 5101.

    Google Scholar 

  29. K. Pavani, M. Singh, and A. Ramanan (2011). Aust. J. Chem. 64, 68.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Guang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, F., Chen, YG., Salimi, A.R. et al. Self-Assembly, Crystal Structure and Analysis of Intermolecular Interactions of the Supramolecular Compound Based on Hexamolybdochromate(III), Sulfate and Piperazine. J Clust Sci 22, 309–318 (2011). https://doi.org/10.1007/s10876-011-0382-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0382-6

Keywords

Navigation