Skip to main content
Log in

Syntheses, 95Mo NMR Spectroscopy and Structures of Distorted Cubic Mo43-O)42-O2P(CH2C6H5)2)4O4 and the Open Mixed-Valent Cluster, Mo43-O)22-O2P(CH2C6H5)2)6O6

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The reaction of MoO2(acac)2 and dibenzylphosphinic acid in ethanol leads to a red distorted cubic tetrameric cluster, Mo43-O)42-O2P(CH2C6H5)2)4O4, and a pink open mixed-valent cluster, Mo43-O)22-O2P(CH2C6H5)2)6O6, when the reduction is carried out at 120 and 75 °C, respectively. 95Mo NMR spectroscopy revealed a singlet for Mo43-O)42-O2P(CH2C6H5)2)4O4 (1) at 584.9 ppm (Δν1/2 = 4500 Hz) and two resonances for Mo43-O)22-O2P(CH2C6H5)2)6O6 (2) at 238.8 ppm (Δν1/2 = 1250 Hz) and 6.4 ppm (Δν1/2 = 5999 Hz), which were assigned to the Mo(V) and Mo(VI) sites, respectively. DFT geometries and 95Mo DFT-GIAO chemical shifts for Mo43-O)42-O2P(CH3)2)4O4 (3) and Mo43-O)22-O2P(CH3)2)6O6 (4) are consistent with X-ray crystallography and 95Mo NMR of 1 and 2. The open complex, Mo43-O)22-O2P(CH2C6H5)2)6O6·2(CH2Cl2), exhibits a central Mo(V)–Mo(V) single bond at 2.6217(5) Å with each Mo(V) atom bonded to one oxo (trans-disposed) terminal ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Jimtaisong, L. Feng, S. Sreehari, C. A. Bayse, and R. L. Luck (2008). J. Cluster Sci. 19, 181.

    Article  CAS  Google Scholar 

  2. C. T. W. Chu, F. Y. K. Lo, and L. F. Dahl (1982). J. Am. Chem. Soc. 104, 3409.

    Article  Google Scholar 

  3. L. F. Dahl and A. S. Foust (1970). J. Am. Chem. Soc. 92, 7337.

    Article  CAS  Google Scholar 

  4. R. C. Haushalter, K. G. Strohmaier and F. W. Lai (1989). Science (Washington, D. C., 1883-) 246, 1289.

  5. J.-Z. Wu, E. Sellitto, G. P. A. Yap, J. Sheats, and G. C. Dismukes (2004). Inorg. Chem. 43, 5795.

    Article  CAS  Google Scholar 

  6. E. W. Corcoran Jr (1990). Inorg. Chem. 29, 157.

    Article  CAS  Google Scholar 

  7. W. Schirmer, U. Floerke, and H. J. Haupt (1989). Z. Anorg. Allg. Chem. 574, 239.

    Article  CAS  Google Scholar 

  8. P. D. Williams and M. D. Curtis (1986). Inorg. Chem. 25, 4562.

    Article  CAS  Google Scholar 

  9. G. S. Kim, D. A. Keszler, and C. W. DeKock (1991). Inorg. Chem. 30, 574.

    Article  CAS  Google Scholar 

  10. D. Attanasio, M. Bonamico, V. Fares and L. Suber (1992). J. Chem. Soc., Dalton Trans., 2523.

  11. L. Benmenni-Boukli-Hacene, A. Yacouta-Nour, M. M. Mostafa, and M. Pierrot (2002). J. Soc. Alger. Chim. 12, 153.

    CAS  Google Scholar 

  12. P. Roman, M. Martinez-Ripoll, and J. Jaud (1982). Z. Kristallogr. 158, 141.

    CAS  Google Scholar 

  13. X. J. Wang, B. S. Kang, C. Y. Su, K. B. Yu, H. X. Zhang, and Z. N. Chen (1999). Polyhedron 18, 3371.

    Article  CAS  Google Scholar 

  14. J. Luo, M. Hong, R. Wang, Q. Shi, R. Cao, J. Weng, R. Sun, and H. Zhang (2003). Inorg. Chem. Commun. 6, 702.

    Article  CAS  Google Scholar 

  15. B. Modec, J. V. Brencic, E. M. Burkholder and J. Zubieta (2003). Dalton Trans., 4618.

  16. L. Mundi and R. C. Haushalter (1991). J. Am. Chem. Soc. 113, 6340.

    Article  CAS  Google Scholar 

  17. R. Mattes, D. Altmeppen, and M. Fetzer (1976). Z. Naturforsch., B: Anorg. Chem., Org. Chem. 31B, 1356.

    CAS  Google Scholar 

  18. M. S. Balakrishna, P. P. George, and S. M. Mobin (2005). Polyhedron 24, 475.

    Article  CAS  Google Scholar 

  19. E. A. Boyd, M. E. K. Boyd, and F. Kerrigan (1996). Tetrahedron. Lett. 37, 5425.

    Article  CAS  Google Scholar 

  20. R. R. Holmes, K. C. K. Swamy, C. G. Schmid, and R. O. Day (1988). J. Am. Chem. Soc. 110, 7060.

    Article  CAS  Google Scholar 

  21. F. H. Allen (2002). Acta Cryst. B58, 380.

    CAS  Google Scholar 

  22. B. Kamenar, B. Korpar-Colig and M. Penavic (1981). J. Chem. Soc., Dalton Trans., 311.

  23. B. Kamenar, B. Korpar-Colig, and M. Penavic (1996). Croat. Chem. Acta 69, 1377.

    CAS  Google Scholar 

  24. B. Kamenar, M. Penavic, B. Korpar-Colig, and B. Markovic (1981). Cryst. Struct. Commun. 10, 961.

    CAS  Google Scholar 

  25. J. Piao, G. Wei, Q. Huang, C. Sun, G. Dong, and F. Yang (1990). Jiegou Huaxue 9, 172.

    CAS  Google Scholar 

  26. C. Sun, C. Guo, Y. Jiang, T. Li, L. Ye, and Y. Fan (1989). Eur. J. Solid State Inorg. Chem. 26, 231.

    CAS  Google Scholar 

  27. M. H. Chisholm, J. C. Huffman, C. C. Kirkpatrick, J. Leonelli, and K. Folting (1981). J. Am. Chem. Soc. 103, 6093.

    Article  CAS  Google Scholar 

  28. M. H. Chisholm, D. L. Clark, R. J. Errington, K. Folting, and J. C. Huffman (1988). Inorg. Chem. 27, 2071.

    Article  CAS  Google Scholar 

  29. F. A. Cotton and J. Su (1995). J. Cluster Sci. 6, 39.

    Article  CAS  Google Scholar 

  30. T. D. Tullius, D. M. Kurtz, S. D. Conradson, and K. O. Hodgson (1979). J. Am. Chem. Soc. 101, 2776.

    Article  CAS  Google Scholar 

  31. C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, and P. A. Wood (2008). J. Appl. Cryst. 41, 466.

    Article  CAS  Google Scholar 

  32. P. Jin-Zhi, W. Ge-Cheng, H. Qi-Jun, S. Chun-Ting, D. Gang and Y. Fan (1990). Jiegou Huaxue (Chin. J. Struct. Chem.) 9, 172.

    Google Scholar 

  33. S. Chunting, G. Chunxiao, J. Yan, L. Tiejin, Y. Ling, and F. Yuguo (1989). Eur. J. Solid State Inorg. Chem. 26, 231.

    Google Scholar 

  34. K. Wieghardt, M. Hahn, W. Swiridoff, and J. Weiss (1983). Angew. Chem. Int. Ed. Engl. 22, 491.

    Article  Google Scholar 

  35. A. Jimtaisong and R. L. Luck (2006). Inorg. Chem. 45, 10391.

    Article  CAS  Google Scholar 

  36. J. A. Brito, H. Teruel, S. Massou, and M. Gomez (2009). Magn. Reson. Chem. 47, 573.

    Article  CAS  Google Scholar 

  37. M. B. Hursthouse, W. Levason, R. Ratnani, and G. Reid (2004). Polyhedron 23, 1915.

    Article  CAS  Google Scholar 

  38. P. Sarrazin, B. Mouchel, and S. Kasztelan (1989). J. Phys. Chem. 93, 904.

    Article  CAS  Google Scholar 

  39. M. A. Fedotov and R. I. Maksimovskaya (2006). J. Struct. Chem. 47, 952.

    Article  CAS  Google Scholar 

  40. J. A. Brito, H. Teruel, G. Muller, S. Massou, and M. Gomez (2008). Inorg. Chim. Acta 361, 2740.

    Article  CAS  Google Scholar 

  41. T. S. Dorosheva, K. P. Bryliakov, and E. P. Talsi (2003). Mendeleev Commun. 13, 8.

    Article  Google Scholar 

  42. T. Iijima, T. Yamase, M. Tansho, T. Shimizu, and K. Nishimura (2010). Chem. Phys. Lett. 487, 232.

    Article  CAS  Google Scholar 

  43. R. G. Kidd (1991). Ann. Rep. NMR Spectrosc. 23, 85.

    Article  CAS  Google Scholar 

  44. C. G. Young and J. H. Enemark (1985). Inorg. Chem. 24, 4416.

    Article  CAS  Google Scholar 

  45. K. Wieghardt, M. Guttmann, P. Chaudhuri, W. Gebert, M. Minelli, C. G. Young, and J. H. Enemark (1985). Inorg. Chem. 24, 3151.

    Article  CAS  Google Scholar 

  46. R. K. Harris Nuclear Magnetic Resonance Spectroscopy, A Physicochemical View (Pitman Books Limited, Belfast, Northern Ireland, 1983).

    Google Scholar 

  47. M. Kohli, D. J. Lewis, R. L. Luck, J. V. Silverton, and K. Sylla (1994). Inorg. Chem. 33, 879.

    Article  CAS  Google Scholar 

  48. J.-L. Montchamp, F. Tian, and J. W. Frost (1995). J. Org. Chem. 60, 6076.

    Article  CAS  Google Scholar 

  49. Bruker, in Apex2 v2.1-4, Bruker AXS Inc., Madison (WI), USA, 2007.

  50. G. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112.

    Article  Google Scholar 

  51. J. F. Van der Maelen and G. M. Sheldrick (1996). Anal. Quim. Int. Ed. 92, 7.

    Google Scholar 

  52. C. Adamo and V. Barone (1998). J. Chem. Phys. 108, 664.

    Article  CAS  Google Scholar 

  53. M. J. Frisch and e. al, in Gaussian 03, Gaussian, Inc.: Wallingford, CT, 2004.

  54. Basis set obtained from the EMSL basis set exchange (bse.pnl.gov/bse/portal).

  55. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer (1992). Can. J. Chem. 70, 560.

    Article  CAS  Google Scholar 

  56. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus (2007). J. Chem. Inf. Model. 47, 1045.

    Article  CAS  Google Scholar 

  57. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  58. T. H. Dunning Jr (1971). J. Chem. Phys 55, 716.

    Article  CAS  Google Scholar 

  59. J. Cioslowski (1989). J. Am. Chem. Soc. 111, 8333.

    Article  CAS  Google Scholar 

  60. M. Buhl, M. Kaupp, O. L. Malkina, and V. G. Malkin (1999). J. Comput. Chem. 20, 91.

    Article  CAS  Google Scholar 

  61. K. Wolinski, J. F. Hinton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The diffractometer used to solve the structures was funded by NSF Grant 0087210, by Ohio Board of Regents Grant CAP-491, and by YSU. Support by Michigan Technological University is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy L. Luck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2011_373_MOESM1_ESM.doc

Listings and comparisons of selected bond distances and angles, Tables S1–S4. Molecular representation figure of 2, Fig. S1, packing diagrams of 1a and 1b as Figs. S2 and S3 respectively. Figures of the 95Mo NMR spectra of complexes 1 and 2, and, an illustration of the deconvolution of the spectrum of complex 2 as Figs. S4–S6, respectively. CCDC 783573, 783574 and 783575 contain the supplementary crystallographic data for complexes 1a, 1b, and 2, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (DOC 745 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maass, J.S., Zeller, M., Holmes, D. et al. Syntheses, 95Mo NMR Spectroscopy and Structures of Distorted Cubic Mo43-O)42-O2P(CH2C6H5)2)4O4 and the Open Mixed-Valent Cluster, Mo43-O)22-O2P(CH2C6H5)2)6O6 . J Clust Sci 22, 193–210 (2011). https://doi.org/10.1007/s10876-011-0373-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0373-7

Keywords

Navigation