Skip to main content
Log in

Synthesis and Characterization of Tin Oxide Nanoparticles by Solid State Chemical Reaction Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

High purity tin oxide nanopowders have been synthesized by using a solid-state chemical reaction technique with annealing at elevated temperature. The effects of two parameters, specifically by controlling the annealing temperature and kind of alkaline chlorides as precursors, the effect on particle size, morphology and IR spectra of synthesized tin oxide nanopowder were investigated. From the X-ray pattern, the crystal structure of the synthesized powders was confirmed as a tetragonal structure. Based on the recorded FTIR spectrum of SnO2, the IR bands due to SnO2 vibrations and its lattice modes were observed at 625 and 690 cm−1, respectively. In addition, an important characterization peak has been identified at 1,450 cm−1 due to Sn–O–Sn bridges observed only when LiCl was used as precursor. The formation of Sn–O–Sn bridges was confirmed by TGA–DTA analysis. According to the SEM images, it is obvious to notice that the kind of alkaline chlorides as precursors play a dominant role in controlling the morphology of tin oxide nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. G. Mandayo (2007). Sens. Lett. 5, (2), 341.

    Article  CAS  Google Scholar 

  2. S. H. Park, Y. C. Son, W. S. Willis, S. L. Suib, and K. E. Creasy (1998). Chem. Mater. 10, 2389.

    Article  CAS  Google Scholar 

  3. A. A. Ansari, P. R. Solanki, and B. D. Malhotra (2009). Sens. Lett. 7, (1), 64.

    Article  CAS  Google Scholar 

  4. G. Korotchenkov, V. Brynzari, and S. Dmitriev (1999). Sens. Actuators B 54, 197.

    Article  Google Scholar 

  5. S. I. Rembeza, E. S. Rembeza, T. V. Svistova, and O. I. Borsiakova (2000). Phys. Status Solidi 179, 147.

    Article  CAS  Google Scholar 

  6. H. Liu, J. Park, and G. Wang (2010). Sens. Lett. 8, (2), 243.

    Article  CAS  Google Scholar 

  7. U. Kersen (2002). Mater. Sci. Forum 633, 386.

    Google Scholar 

  8. F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, and X. Xin (2002). Sens. Actuators B 81, 165.

    Article  Google Scholar 

  9. Y. M. Zhou, X. Q. Xin, and Chinese (1999). J. Inorg. Chem. 15, 273.

    CAS  Google Scholar 

  10. J. B. Wiley and R. B. Kaner (1992). Science 225, 1093.

    Article  Google Scholar 

  11. X. R. Ye, D. J. Jia, J. Q. Yu, X. Q. Xin, and Z. Xue (1999). Adv. Mater. 11, 941.

    Article  CAS  Google Scholar 

  12. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, and S. Wu (2008). Sens. Actuators B 131, 183.

    Article  Google Scholar 

  13. V. Vorgelegt (2006). Ph.D Thesis, Eberhard Karls University, Tübingen, Germany.

  14. U. Kersen and M. R. Sundberg (2003). J. Electrochem. Soc 150, 129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarabadani, P., Sadeghi, M., Ghasemi, M. et al. Synthesis and Characterization of Tin Oxide Nanoparticles by Solid State Chemical Reaction Method. J Clust Sci 22, 131–140 (2011). https://doi.org/10.1007/s10876-011-0350-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0350-1

Keywords

Navigation