Skip to main content

Advertisement

Log in

Large-Scale Molecular Dynamics Simulations of Energetic Ni Nanocluster Impact onto the Surface

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

On the atomic scale, Molecular Dynamics (MD) Simulation of Nano Ni cluster impact on Ni (100) substrate surface have been carried out for energies of E a = 1–5 eV/atom and total energy of E T = 195 eV (the total energy of cluster is E T = nE a, n is the number of cluster atoms) to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many-body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature T max and the time t max within which this temperature is reached as a function of cluster sizes and the total energy E T. The temperature T max is linearly proportional to total cluster energy. For the constant energy per atom and for the cluster size increase, the correlated collisions rapidly transfers energy to the substrate, and the time t max approached a constant value. For constant total energy the temperature T max and the time t max versus different cluster sizes was studied. We showed that the cluster implantation and sputtering atoms from the surface are affected by the cluster size and total kinetic energy of the clusters. Finally time dependence of the number N dis of disordered atoms in the substrate was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Haberland, M. Mall, M. Moseler, Y. Qiang, Th. Reiners, and Y. Thurner (1994). Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol. A 12, 2925–2930.

    Article  CAS  Google Scholar 

  2. I. Yamada, and H. Taksoka (1986). Low temperature epitaxy by ionized-cluster beam. J. Vac. Sci. Technol. A 4, 722–727.

    Article  CAS  Google Scholar 

  3. R. J. Beuhler, and G. Friedlander (1989). Cluster-impact fusion. Phys. Rev. Lett. 63, 1292–1295.

    Article  CAS  Google Scholar 

  4. P. M. Echenique, and J. R. Manson (1990). Cluster-impact fusion. Phys. Rev. Lett. 64, 1413–1416.

    Article  CAS  Google Scholar 

  5. I. Yamada, and G. H. Takaoka (1993). Ionized cluster beams: physics and technology. Jpn. J. Appl. Phys. 32, 2121–2124.

    Article  CAS  Google Scholar 

  6. I. Yamada, H. Inokawa, and T. Takagi (1984). J. Appl. Phys. 56, 2764–2782.

    Article  Google Scholar 

  7. T. Tagaki, Ionized Cluster Beam Deposition, chap. 5 (Noyes, New Jersey, 1988), p. 106.

  8. I. Yamada, and G. H. Takaoka (1991). X-ray characteristics of atomically flat gold films deposited by ICB. Nucl. Instr. Meth. B 59/60, 216–218.

    Article  Google Scholar 

  9. M. Adachi, S. Ikuni, and K. Yamada (1991). Optical characteristics of high-power excimer laser mirrors of single-crystal aluminum film with high reflectance and durability. Nucl. Instr. Meth. B 59/60, 940.

    Article  Google Scholar 

  10. C. Cleveland, and U. Landman (1992). Dynamics of cluster-surface collisions. Science 257, 355–361.

    Article  CAS  Google Scholar 

  11. H. Haberland, Z. Insepov, and M. Moseler (1995). Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys. Rev. B 51, 11061–11067.

    Article  CAS  Google Scholar 

  12. R. S. Averback, and M. Chaly (1994). Nucl. Instr. Meth. B 90, 191–194.

    Article  CAS  Google Scholar 

  13. C. Anders, S. Meblinger, and H. M. Urbassek (2006). Deformation of slow liquid and solid clusters upon deposition: a molecular-dynamics study of Al cluster impact on an Al surface, Surface Science 600, 2587–2593.

    Article  CAS  Google Scholar 

  14. K.-H. Meiwes-Broer (2000). Metal Clusters at Surfaces: Structure, Quantum Properties, Physical Chemistry (Springer Series in Cluster Physics, Springer, Berlin).

  15. C. Binns (2001). Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1–49.

    Article  CAS  Google Scholar 

  16. Y. Xia, and N. J. Halas (2005). Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 5.

    Google Scholar 

  17. S. Pratontep, P. Preece, C. Xirouchaki, R. E. Palmer, C. F. Sanz Navarro, S. D. Kenny, and R. Smith (2003). Scaling relations for implantation of size-selected Au, Ag, and Si clusters into graphite, Phys. Rev. Lett. 90, 055503–055507.

    Article  CAS  Google Scholar 

  18. R. Smith, C. Nock, S. Kenny, J. J. Belbruno, M. Di Vece, S. Palomba, and R. E. Palmer (2006). Modeling the pinning of Au and Al clusters on graphite. Phys. Rev. B 73, 125429–125434.

    Article  Google Scholar 

  19. K. Meinander, K. Nordlund, and J. Keinonen (2006). Size dependent epitaxial cluster deposition: the effect of deposition energy. Nucl. Instrum. Meth. B 242, 161–163.

    Article  CAS  Google Scholar 

  20. S. M. Foiles, M. I. Bakes, and M. S. Daw (1986). Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Al, Pd, Pt, and their alloys. Phys. Rev. B 33, 7893–7991.

    Article  Google Scholar 

  21. http://www.lammps.sandia.gov.

  22. M. S. Daw, and M. I. Baskes (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285–1288.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mirabbaszadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabbaszadeh, K., Zaminpayma, E., Nayebi, P. et al. Large-Scale Molecular Dynamics Simulations of Energetic Ni Nanocluster Impact onto the Surface. J Clust Sci 19, 411–419 (2008). https://doi.org/10.1007/s10876-008-0185-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0185-6

Keywords

Navigation