Skip to main content

Advertisement

Log in

De Novo Somatic Mosaicism of CYBB Caused by Intronic LINE-1 Element Insertion Resulting in Chronic Granulomatous Disease

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2023

This article has been updated

Abstract

Chronic granulomatosis disease (CGD) is a rare inborn error of immunity, characterized by phagocytic respiratory outbreak dysfunction. Mutations causing CGD occur in CYBB on the X chromosome and in the autosomal genes CYBA, NCF1, NCF2, NCF4, RAC2, and CYBC1. Nevertheless, some patients are clinically diagnosed with CGD, due to abnormal respiratory outbursts, while the pathogenic gene mutation is unidentified. Here, we report a patient with CGD who first presented with Bacillus Calmette-Guérin disease and had recurrent pneumonia. He was diagnosed with CGD by nitro blue tetrazolium and respiratory burst tests. Detailed assessment of neutrophil activity revealed that patient neutrophils were almost entirely nonfunctional. Sanger sequencing detected a 6-kb insertion of a LINE-1 transposable element in the third intron of CYBB, leading to abnormal splicing and pseudoexon insertion, as well as introduction of a premature termination codon, resulting in predicted protein truncation. Clonal analysis demonstrated that the patient had somatic mosaicism, and the phagocytes were almost all variant CYBB, while the mosaicism rate of PBMC was about 65%. Finally, deep RNA sequencing and gp91phox expression analysis confirmed the pathogenicity of the mutation. In conclusion, we demonstrate that insertion of a LINE-1 transposon in a CYBB intron was responsible for CGD in our patient. Intron LINE-1 transposon element insertion should be examined in CGD patients without any known disease-causing gene mutation, in addition to identification of new genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The dataset described in this study is available from the corresponding authors upon reasonable request.

Code Availability

Not applicable.

Change history

References

  1. Yu HH, Yang YH, Chiang BL. Chronic granulomatous disease: a comprehensive review. Clin Rev Allergy Immunol. 2021;61(2):101–13. https://doi.org/10.1007/s12016-020-08800-x.

    Article  CAS  Google Scholar 

  2. Roos D, van Leeuwen K, Hsu AP, Priel DL, Begtrup A, Brandon R, et al. Hematologically important mutations: X-linked chronic granulomatous disease (fourth update). Blood Cells Mol Dis. 2021;90: 102587. https://doi.org/10.1016/j.bcmd.2021.102587.

    Article  CAS  Google Scholar 

  3. Rosenzweig SD. Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol. 2008;28(Suppl 1):S67-72. https://doi.org/10.1007/s10875-007-9160-5.

    Article  Google Scholar 

  4. Holland SM. Chronic granulomatous disease. Clin Rev Allergy Immunol. 2010;38(1):3–10. https://doi.org/10.1007/s12016-009-8136-z.

    Article  CAS  Google Scholar 

  5. Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 2018;9(1):4447. https://doi.org/10.1038/s41467-018-06964-x.

    Article  CAS  Google Scholar 

  6. Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER, et al. EROS/CYBC1 mutations: decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol. 2019;143(2):782–5 e1. https://doi.org/10.1016/j.jaci.2018.09.019

  7. Neehus A, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, et al. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. The Journal of experimental medicine 2021;218(9). https://doi.org/10.1084/jem.20210501

  8. Neehus A, Tuano K, Le Voyer T, Nandiwada S, Murthy K, Puel A, et al. Chronic granulomatous disease-like presentation of a child with autosomal recessive PKCδ deficiency. J Clin Immunol. 2022. https://doi.org/10.1007/s10875-022-01268-8.

    Article  Google Scholar 

  9. Wang S, Wang T, Xiang Q, Xiao M, Cao Y, Xu H, et al. Clinical and molecular features of chronic granulomatous disease in mainland China and a XL-CGD female infant patient after prenatal diagnosis. J Clin Immunol. 2019;39(8):762–75. https://doi.org/10.1007/s10875-019-00680-x.

    Article  CAS  Google Scholar 

  10. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. https://doi.org/10.1038/35057062.

    Article  CAS  Google Scholar 

  11. Symer D, Connelly C, Szak S, Caputo E, Cost G, Parmigiani G, et al. Human l1 retrotransposition is associated with genetic instability in vivo. Cell. 2002;110(3):327–38. https://doi.org/10.1016/s0092-8674(02)00839-5.

    Article  CAS  Google Scholar 

  12. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10(10):691–703. https://doi.org/10.1038/nrg2640.

    Article  CAS  Google Scholar 

  13. Payer LM, Burns KH. Transposable elements in human genetic disease. Nat Rev Genet. 2019;20(12):760–72. https://doi.org/10.1038/s41576-019-0165-8.

    Article  CAS  Google Scholar 

  14. Roos D, de Boer M. Retrotransposable genetic elements causing neutrophil defects. Eur J Clin Invest. 2018;48(Suppl 2): e12953. https://doi.org/10.1111/eci.12953.

    Article  CAS  Google Scholar 

  15. Luo X, Liu Q, Jiang J, Tang W, Ding Y, Zhou L, et al. Characterization of a cohort of patients with LIG4 deficiency reveals the founder effect of p.R278L, unique to the Chinese population. Front Immunol. 2021;12:695993. https://doi.org/10.3389/fimmu.2021.695993

  16. Sottini A, Serana F, Bertoli D, Chiarini M, Valotti M, Vaglio Tessitore M, et al. Simultaneous quantification of T-cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) by real-time PCR. J Vis Exp. 2014(94). https://doi.org/10.3791/52184

  17. Bylund J, Bjornsdottir H, Sundqvist M, Karlsson A, Dahlgren C. Measurement of respiratory burst products, released or retained, during activation of professional phagocytes. Methods Mol Biol. 2014;1124:321–38. https://doi.org/10.1007/978-1-62703-845-4_21.

    Article  CAS  Google Scholar 

  18. Khandagale A, Lazzaretto B, Carlsson G, Sundin M, Shafeeq S, Römling U, et al. JAGN1 is required for fungal killing in neutrophil extracellular traps: implications for severe congenital neutropenia. J Leukoc Biol. 2018;104(6):1199–213. https://doi.org/10.1002/jlb.4a0118-030rr.

    Article  CAS  Google Scholar 

  19. Tangye SG, Gray PE, Pillay BA, Yap JY, Figgett WA, Reeves J, et al. Hyper-IgE syndrome due to an elusive novel intronic homozygous variant in DOCK8. J Clin Immunol. 2022;42(1):119–29. https://doi.org/10.1007/s10875-021-01152-x.

    Article  CAS  Google Scholar 

  20. Miyano K, Sumimoto H. Assessment of the role for Rho family GTPases in NADPH oxidase activation. Methods Mol Biol. 2012;827:195–212. https://doi.org/10.1007/978-1-61779-442-1_14.

    Article  CAS  Google Scholar 

  21. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270(5237):797–800. https://doi.org/10.1126/science.270.5237.797.

    Article  CAS  Google Scholar 

  22. Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol. 2018;142(3):970–3 e8. https://doi.org/10.1016/j.jaci.2018.04.022

  23. Kwok JSY, Cheung SKF, Ho JCY, Tang IWH, Chu PWK, Leung EYS, et al. Establishing simultaneous T cell receptor excision circles (TREC) and K-deleting recombination excision circles (KREC) quantification assays and laboratory reference intervals in healthy individuals of different age groups in Hong Kong. Front Immunol. 2020;11:1411. https://doi.org/10.3389/fimmu.2020.01411.

    Article  CAS  Google Scholar 

  24. Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X, et al. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol. 2009;7:23. https://doi.org/10.1186/1741-7007-7-23.

    Article  CAS  Google Scholar 

  25. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human Inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin Immunol. 2020;40(1):66–81. https://doi.org/10.1007/s10875-020-00758-x.

    Article  Google Scholar 

  26. Ishikawa T, Okai M, Mochizuki E, Uchiyama T, Onodera M, Kawai T. Bacillus Calmette-Guérin (BCG) infections at high frequency in both AR-CGD and X-CGD patients following BCG vaccination. Clin Infect Dis. 2021;73(9):e2538–44. https://doi.org/10.1093/cid/ciaa1049.

    Article  Google Scholar 

  27. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr. 2015;3(2):MDNA3–0061–2014. https://doi.org/10.1128/microbiolspec.MDNA3-0061-2014

  28. Wimmer K, Callens T, Wernstedt A, Messiaen LJPg. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. 2011;7(11):e1002371. https://doi.org/10.1371/journal.pgen.1002371

  29. Hancks DC, Kazazian HH Jr. Roles for retrotransposon insertions in human disease. Mob DNA. 2016;7:9. https://doi.org/10.1186/s13100-016-0065-9.

    Article  CAS  Google Scholar 

  30. Kazazian HH Jr, Moran JV. Mobile DNA in health and disease. N Engl J Med. 2017;377(4):361–70. https://doi.org/10.1056/NEJMra1510092.

    Article  CAS  Google Scholar 

  31. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, et al. LINE-1 retrotransposition activity in human genomes. Cell. 2010;141(7):1159–70. https://doi.org/10.1016/j.cell.2010.05.021.

    Article  CAS  Google Scholar 

  32. Kumatori A, Faizunnessa N, Suzuki S, Moriuchi T, Kurozumi H, Nakamura M. Nonhomologous recombination between the cytochrome b558 heavy chain gene (CYBB) and LINE-1 causes an X-linked chronic granulomatous disease. Genomics. 1998;53(2):123–8. https://doi.org/10.1006/geno.1998.5510.

    Article  CAS  Google Scholar 

  33. Meischl C, Boer M, Ahlin A, Roos D. A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet. 2000;8(9):697–703. https://doi.org/10.1038/sj.ejhg.5200523.

    Article  CAS  Google Scholar 

  34. Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, et al. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet. 2002;71(2):327–36. https://doi.org/10.1086/341722.

    Article  CAS  Google Scholar 

  35. de Boer M, van Leeuwen K, Geissler J, Weemaes CM, van den Berg TK, Kuijpers TW, et al. Primary immunodeficiency caused by an exonized retroposed gene copy inserted in the CYBB gene. Hum Mutat. 2014;35(4):486–96. https://doi.org/10.1002/humu.22519.

    Article  CAS  Google Scholar 

  36. Gentsch M, Kaczmarczyk A, van Leeuwen K, de Boer M, Kaus-Drobek M, Dagher M, et al. Alu-repeat-induced deletions within the NCF2 gene causing p67-phox-deficient chronic granulomatous disease (CGD). 2010;31(2):151–8. https://doi.org/10.1002/humu.21156

  37. Yamada M, Okura Y, Suzuki Y, Fukumura S, Miyazaki T, Ikeda H, et al. Somatic mosaicism in two unrelated patients with X-linked chronic granulomatous disease characterized by the presence of a small population of normal cells. Gene. 2012;497(1):110–5. https://doi.org/10.1016/j.gene.2012.01.019.

    Article  CAS  Google Scholar 

  38. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903–10. https://doi.org/10.1038/nature03663.

    Article  CAS  Google Scholar 

  39. Kano H, Godoy I, Courtney C, Vetter M, Gerton G, Ostertag E, et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009;23(11):1303–12. https://doi.org/10.1101/gad.1803909.

    Article  CAS  Google Scholar 

  40. Richardson S, Gerdes P, Gerhardt D, Sanchez-Luque F, Bodea G, Muñoz-Lopez M, et al. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. J Genome research. 2017;27(8):1395–405. https://doi.org/10.1101/gr.219022.116.

    Article  CAS  Google Scholar 

  41. Aluri J, Cooper M. Genetic mosaicism as a cause of inborn errors of immunity. J Journal of clinical immunology. 2021;41(4):718–28. https://doi.org/10.1007/s10875-021-01037-z.

    Article  Google Scholar 

  42. Mensa-Vilaró A, Bravo García-Morato M, de la Calle-Martin O, Franco-Jarava C, Martínez-Saavedra M, González-Granado L, et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J The Journal of allergy clinical immunology. 2019;143(1):359–68. https://doi.org/10.1016/j.jaci.2018.09.009.

    Article  CAS  Google Scholar 

  43. Al-Mousa H, Abouelhoda M, Monies DM, Al-Tassan N, Al-Ghonaium A, Al-Saud B, et al. Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases. J Allergy Clin Immunol. 2016;137(6):1780–7. https://doi.org/10.1016/j.jaci.2015.12.1310.

    Article  CAS  Google Scholar 

  44. Postel M, Culver J, Ricker C, Craig D. Transcriptome analysis provides critical answers to the “variants of uncertain significance” conundrum. Hum Mutat. 2022. https://doi.org/10.1002/humu.24394.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the patient and his family for participating in this study.

Funding

This work was supported by the Graduate Mentor Team of Chongqing Municipal Education Commission (Grant number 2019–09-66), the National Natural Science Foundation of China (Grant number 82070135), and the CQMU Program for Youth Innovation in Future Medicine (W0100).

Author information

Authors and Affiliations

Authors

Contributions

XD.Z and YF.A designed this study, and reviewed and revised the manuscript. L.Yu collected clinical data, followed the patient, performed experiments, and drafted the manuscript. WH.L., G.L., G.S., L.Yang, JJ.C., and LN.Z. performed some experiments. Y.D., ZY.Z., and XM.T. provided essential help for clinical management and follow-up of the patient. All authors contributed to the final version of the manuscript and approved submission of the final version.

Corresponding authors

Correspondence to Yunfei An or Xiaodong Zhao.

Ethics declarations

Ethics Approval

The study was performed following the Declaration of Helsinki and approved by the ethics committee of Children’s Hospital of Chongqing Medical University (Chongqing, China). Written informed consent for participation in this study was obtained from patient’s parents.

Consent to Participate

Written informed consent was obtained from patient’s parents.

Consent for Publication

Written informed consent for publication of the study was obtained from patient’s parents. All the authors approved the final version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Yunfei An was not captured as the co-corresponding author.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Li, W., Lv, G. et al. De Novo Somatic Mosaicism of CYBB Caused by Intronic LINE-1 Element Insertion Resulting in Chronic Granulomatous Disease. J Clin Immunol 43, 88–100 (2023). https://doi.org/10.1007/s10875-022-01347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-022-01347-w

Keywords

Navigation