Skip to main content

Advertisement

Log in

Clinical and Molecular Features of Chronic Granulomatous Disease in Mainland China and a XL-CGD Female Infant Patient After Prenatal Diagnosis

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Chronic granulomatous disease (CGD) is the most common phagocyte defect disease. Here, we describe 114 CGD patients in our center and report a rare female infant with XL-CGD to provide a better understanding of diagnosis, treatment, and prenatal diagnosis of CGD.

Method

Patients were diagnosed by DHR-1,2,3 flow cytometry assays and gene analysis. X chromosome inactivation analysis and gp91phox protein test were used for a female infant with XL-CGD.

Results

XL-CGD accounts for the majority of cases in China and results in higher susceptibility to some infections than AR-CGD. The DHR assay can help diagnose CGD quickly, and atypical results should be combined with clinical manifestations, genetic analysis, and regular follow-up. For prenatal diagnosis, both gDNA and cDNA genotypes of amniotic fluid cells should be identified, and cord blood DHR assays should be performed to identify female XL-CGD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beghin A, Comini M, Soresina A, Imberti L, Zucchi M, Plebani A, et al. Chronic granulomatous disease in children: a single center experience. Clin Immunol. 2018;188:12–9.

    CAS  PubMed  Google Scholar 

  2. Roos D. Chronic granulomatous disease. Br Med Bull. 2016;118:50–63.

    PubMed  PubMed Central  Google Scholar 

  3. Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun. 2005;338:677–86.

    CAS  PubMed  Google Scholar 

  4. Wolach B, Gavrieli R, de Boer M, van Leeuwen K, Berger-Achituv S, Stauber T, et al. Chronic granulomatous disease: clinical, functional, molecular, and genetic studies. The Israeli experience with 84 patients. Am J Hematol. 2017;92:28–36.

    CAS  PubMed  Google Scholar 

  5. van de Geer A, Nieto-Patlan A, Kuhns DB, Tool AT, Arias AA, Bouaziz M, et al. Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest. 2018;128:3957–75.

    PubMed  PubMed Central  Google Scholar 

  6. Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO, et al. A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun. 9(2018):4447.

  7. Rawat A, Bhattad S, Singh S. Chronic granulomatous disease. Indian J Pediatr. 2016;83:345–53.

    PubMed  Google Scholar 

  8. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore). 79(2000):155–69.

    CAS  PubMed  Google Scholar 

  9. van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4:e5234.

    PubMed  PubMed Central  Google Scholar 

  10. Ochs HD, Igo RP. The NBT slide test: a simple screening method for detecting chronic granulomatous disease and female carriers. J Pediatr. 1973;83:77–82.

    CAS  PubMed  Google Scholar 

  11. Abraham RS, Aubert G. Flow cytometry, a versatile tool for diagnosis and monitoring of primary immunodeficiencies. Clin Vaccine Immunol. 2016;23:254–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods. 1995;178:89–97.

    CAS  PubMed  Google Scholar 

  13. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51:1229–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC. X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol. 2008;129:372–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu H, Tian W, Li SJ, Zhang LY, Liu W, Zhao Y, et al. Clinical and molecular features of 38 children with chronic granulomatous disease in Mainland China. J Clin Immunol. 2014;34:633–41.

    CAS  PubMed  Google Scholar 

  16. Zhong XH, Ding J, Zhou JH, Yu ZH, Sun SZ, Bao Y, et al. A multicenter study of reference intervals for 15 laboratory parameters in Chinese children. Zhonghua Er Ke Za Zhi. 2018;56:835–45.

    CAS  PubMed  Google Scholar 

  17. Ding Y, Zhou L, Xia Y, Wang W, Wang Y, Li L, et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol. 2018;142:970–973.e8.

    PubMed  Google Scholar 

  18. Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T, et al. Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cell Mol Dis. 2010;45:246–65.

    CAS  Google Scholar 

  19. Zhou Q, Hui X, Ying W, Hou J, Wang W, Liu D, et al. A cohort of 169 chronic granulomatous disease patients exposed to BCG vaccination: a retrospective study from a single center in Shanghai, China (2004-2017). J Clin Immunol. 2018;38:260–72.

    CAS  PubMed  Google Scholar 

  20. Wu J, Wang WF, Zhang YD, Chen TX. Clinical features and genetic analysis of 48 patients with chronic granulomatous disease in a single center study from Shanghai, China (2005-2015): new studies and a literature review. J Immunol Res. 2017;2017:8745254.

    PubMed  PubMed Central  Google Scholar 

  21. Roos D, Kuhns DB, Maddalena A, Bustamante J, Kannengiesser C, de Boer M, et al. Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (second update). Blood Cells Mol Dis. 2010;44:291–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, et al. Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol. 2008;126:155–64.

    CAS  PubMed  Google Scholar 

  23. de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PV, Schimke LF, et al. Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: first report from the LASID Registry. Pediatr Blood Cancer. 2015;62:2101–7.

    PubMed  Google Scholar 

  24. Koker MY, Camcioglu Y, van Leeuwen K, Kilic SS, Barlan I, Yilmaz M, et al. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. J Allergy Clin Immunol. 2013;132:1156–1163.e5.

    CAS  PubMed  Google Scholar 

  25. Henrickson SE, Jongco AM, Thomsen KF, Garabedian EK, Thomsen IP. Noninfectious manifestations and complications of chronic granulomatous disease. J Pediatric Infect Dis Soc. 2018;7:S18–24.

    PubMed  PubMed Central  Google Scholar 

  26. Huang C, De Ravin SS, Paul AR, Heller T, Ho N, Datta LW, et al. Genetic risk for inflammatory bowel disease is a determinant of Crohn’s disease development in chronic granulomatous disease. Inflamm Bowel Dis. 2016;22:2794–801.

    PubMed  PubMed Central  Google Scholar 

  27. Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O’Brien S, et al. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics. 2004;114:462–8.

    PubMed  Google Scholar 

  28. Norouzi S, Aghamohammadi A, Mamishi S, Rosenzweig SD, Rezaei N. Bacillus Calmette-Guerin (BCG) complications associated with primary immunodeficiency diseases. J Inf Secur. 2012;64:543–54.

    Google Scholar 

  29. Mohsenzadegan M, Fattahi F, Fattahi F, Mirshafiey A, Fazlollahi MR, Naderi Beni F, et al. Altered pattern of naive and memory B cells and B1 cells in patients with chronic granulomatous disease. Iran J Allergy Asthma Immunol. 2014;13:157–65.

    PubMed  Google Scholar 

  30. Carnide EG, Jacob CA, Castro AM, Pastorino AC. Clinical and laboratory aspects of chronic granulomatous disease in description of eighteen patients. Pediatr Allergy Immunol. 2005;16:5–9.

    PubMed  Google Scholar 

  31. Moir S, De Ravin SS, Santich BH, Kim JY, Posada JG, Ho J, et al. Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells. Blood. 2012;120:4850–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. El Hawary R, Meshaal S, Nagy D, Fikry I, Alkady R, Abd Elaziz D, et al. Study of naive and memory cells in a cohort of Egyptian chronic granulomatous disease patients. J Recept Signal Transduct Res. 2015;35:423–8.

    PubMed  Google Scholar 

  33. Horvath R, Rozkova D, Lastovicka J, Polouckova A, Sedlacek P, Sediva A, et al. Expansion of T helper type 17 lymphocytes in patients with chronic granulomatous disease. Clin Exp Immunol. 2011;166:26–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Donaldson M, Antignani A, Milner J, Zhu N, Wood A, Cardwell-Miller L, et al. p47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis. Cell Death Differ. 2009;16:125–38.

    CAS  PubMed  Google Scholar 

  35. El Hawary R, Meshaal S, Deswarte C, Galal N, Abdelkawy M, Alkady R, et al. Role of flow cytometry in the diagnosis of chronic granulomatous disease: the Egyptian experience. J Clin Immunol. 2016;36:610–8.

    PubMed  Google Scholar 

  36. Ang EY, Soh JY, Liew WK, Chan KW, Thoon KC, Chong CY, et al. Reliability of acute illness dihydrorhodamine-123 testing for chronic granulomatous disease. Clin Lab. 2013;59:203–6.

    CAS  PubMed  Google Scholar 

  37. Mauch L, Lun A, O’Gorman MR, Harris JS, Schulze I, Zychlinsky A, et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem. 2007;53:890–6.

    CAS  PubMed  Google Scholar 

  38. Rosen-Wolff A, Soldan W, Heyne K, Bickhardt J, Gahr M, Roesler J. Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol. 2001;80:113–5.

    CAS  PubMed  Google Scholar 

  39. Anderson-Cohen M, Holland SM, Kuhns DB, Fleisher TA, Ding L, Brenner S, et al. Severe phenotype of chronic granulomatous disease presenting in a female with a de novo mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol. 2003;109:308–17.

    CAS  PubMed  Google Scholar 

  40. Francke U. Random X inactivation resulting in mosaic nullisomy of region Xp21.1----p21.3 associated with heterozygosity for ornithine transcarbamylase deficiency and for chronic granulomatous disease. Cytogenet Cell Genet. 1984;38:298–307.

    CAS  PubMed  Google Scholar 

  41. Koker MY, Sanal O, de Boer M, Tezcan I, Metin A, Tan C, et al. Skewing of X-chromosome inactivation in three generations of carriers with X-linked chronic granulomatous disease within one family. Eur J Clin Investig. 2006;36:257–64.

    CAS  Google Scholar 

  42. Wolach B, Scharf Y, Gavrieli R, de Boer M, Roos D. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB. Blood. 2005;105:61–6.

    CAS  PubMed  Google Scholar 

  43. Gono T, Yazaki M, Agematsu K, Matsuda M, Yasui K, Yamaura M, et al. Adult onset X-linked chronic granulomatous disease in a woman patient caused by a de novo mutation in paternal-origin CYBB gene and skewed inactivation of normal maternal X chromosome. Intern Med. 2008;47:1053–6.

    PubMed  Google Scholar 

  44. Mouy R, Seger R, Bourquin JP, Veber F, Blanche S, Griscelli C, et al. Interferon gamma for chronic granulomatous disease. N Engl J Med. 1991;325:1516–7.

    CAS  PubMed  Google Scholar 

  45. The International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med. 1991;324:509–16.

    Google Scholar 

  46. Seger RA. Modern management of chronic granulomatous disease. Br J Haematol. 2008;140:255–66.

    CAS  PubMed  Google Scholar 

  47. Seger RA. Chronic granulomatous disease: recent advances in pathophysiology and treatment. Neth J Med. 2010;68:334–40.

    CAS  PubMed  Google Scholar 

  48. Margolis DM, Melnick DA, Alling DW, Gallin JI. Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis. 1990;162:723–6.

    CAS  PubMed  Google Scholar 

  49. Mouy R, Veber F, Blanche S, Donadieu J, Brauner R, Levron JC, et al. Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr. 1994;125:998–1003.

    CAS  PubMed  Google Scholar 

  50. Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, et al. Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med. 2003;348:2416–22.

    CAS  PubMed  Google Scholar 

  51. Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127:1319–26 quiz 1327-8.

    PubMed  PubMed Central  Google Scholar 

  52. Connelly JA, Marsh R, Parikh S, Talano JA. Allogeneic hematopoietic cell transplantation for chronic granulomatous disease: controversies and state of the art. J Pediatric Infect Dis Soc. 2018;7:S31–9.

    PubMed  PubMed Central  Google Scholar 

  53. Morillo-Gutierrez B, Beier R, Rao K, Burroughs L, Schulz A, Ewins AM, et al. Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience. Blood. 2016;128:440–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Khandelwal P, Bleesing JJ, Davies SM, Marsh RA. A single-center experience comparing alemtuzumab, fludarabine, and melphalan reduced-intensity conditioning with myeloablative busulfan, cyclophosphamide, and antithymocyte globulin for chronic granulomatous disease. Biol Blood Marrow Transplant. 2016;22:2011–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for their trust and cooperation.

Funding

The study was financially supported by the Development and Application of Rapid Diagnostic Technology for Primary Immunodeficiency Disease Caused by Abnormal Response to BCG Vaccination, Science and Technology Innovation Project of Social Undertaking and People’s Livelihood Guarantee of Chongqing Science and Technology Commission (cstc 2015 shmszx0131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, T., Xiang, Q. et al. Clinical and Molecular Features of Chronic Granulomatous Disease in Mainland China and a XL-CGD Female Infant Patient After Prenatal Diagnosis. J Clin Immunol 39, 762–775 (2019). https://doi.org/10.1007/s10875-019-00680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-019-00680-x

Keywords

Navigation