Skip to main content

Advertisement

Log in

Altered miRNAs Expression Profiles and Modulation of Immune Response Genes and Proteins During Neonatal Sepsis

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

The dysregulated expression of miRNAs in the immune system may be critical for immune responses to pathogens and evolve into the inflammation seen in sepsis. The aim of this study is to explore the important role of miRNAs in the regulation of the immune response during neonatal sepsis.

Methods

Using a microarray we performed the miRNA expression profiling of peripheral blood leukocytes from neonates with sepsis and uninfected neonates. Based on the predicted target genes of these miRNAs we selected 26 immune-related miRNAs out of the differentially expressed miRNAs for further testing by quantitative PCR. We simultaneously detected the immune response genes by PCR array and plasma cytokine levels using a protein chip to investigate the effect of the altered miRNAs on the immune response in neonatal sepsis.

Results

There were 10 immune regulatory miRNAs whose expression was significantly changed more than two fold in the neonates with sepsis compared with the uninfected neonates. The expression levels of 11 immune response genes and the plasma levels of 15 cytokines or receptors were significantly up- or down-regulated in the neonates with sepsis compared to the uninfected neonates. This comprehensive analysis suggests that the altered miRNAs modulate the immune response during neonatal sepsis in a way that represses the inflammatory response.

Conclusions

Our investigation demonstrated some miRNAs with altered expression levels and their probable association with the regulation of immune response during neonatal sepsis. The characteristics of the neonatal inflammatory response could be attributed to immature immune function of neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin N Am. 2013;60:367–89.

    Article  Google Scholar 

  2. Thaver D, Zaidi AK. Burden of neonatal infections in developing countries: a review of evidence from community-based studies. Pediatr Infect Dis J. 2009;28(1 Suppl):S3–9.

    Article  PubMed  Google Scholar 

  3. Wynn JL, Levy O. Role of innate host defenses in susceptibility to early-onset neonatal sepsis. Clin Perinatol. 2010;37:307–37.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Futata EA, Fusaro AE, de Brito CA, Sato MN. The neonatal immune system immunomodulation of infections in early life. Expert Rev Anti Infect Ther. 2012;10:289–98.

    Article  PubMed  CAS  Google Scholar 

  5. Belver L, Papavasiliou FN, Ramiro AR. MicroRNA control of lymphocyte differentiation and function. Curr Opin Immunol. 2011;23:368–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136:26–36.

    Article  PubMed  CAS  Google Scholar 

  7. Lu LF, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. 2009;127:291–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Liston A, Linterman M, Lu LF. MicroRNA in the adaptive immune system, in sickness and in health. J Clin Immunol. 2010;30:339–46.

    Article  PubMed  CAS  Google Scholar 

  10. Wang HJ, Zhang PJ, Chen WJ, Jie D, Dan F, Jia YH, et al. Characterization and identification of novel serum microRNAs in sepsis patients with different outcomes. Shock. 2013;39:480–7.

    Article  PubMed  CAS  Google Scholar 

  11. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One. 2012;7:e38885.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Wang HJ, Zhang PJ, Chen WJ, Feng D, Jia YH, Xie LX. Four serum microRNAs identified as diagnostic biomarkers of sepsis. J Trauma Acute Care Surg. 2012;73:850–4.

    Article  PubMed  CAS  Google Scholar 

  13. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie LX. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med. 2012;50:1423–8.

    PubMed  CAS  Google Scholar 

  14. Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 2010;394:184–8.

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt WM, Spiel AO, Jilma B, Wolzt M, Müller M. In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun. 2009;380:437–41.

    Article  PubMed  CAS  Google Scholar 

  16. Subspecialty Group of Neonatology Pediatric Society Chinese Medical Association; Editorial Board Chinese Journal of Pediatrics. [Protocol for diagnosis and treatment of neonatal septicemia]. Zhonghua Er Ke Za Zhi. 2003;41:897–9.

    Google Scholar 

  17. Skirecki T, Borkowska-Zielińska U, Złotorowicz M, Hoser G. Sepsis immunopathology: perspectives of monitoring and modulation of the immune disturbances. Arch Immunol Ther Exp (Warsz). 2012;60:123–35.

    Article  CAS  Google Scholar 

  18. Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. 2013;93:329–42.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Wynn J, Cornell TT, Wong HR, Shanley TP, Wheeler DS. The host response to sepsis and developmental impact. Pediatrics. 2010;125:1031–41.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wynn JL, Neu J, Moldawer LL, Levy O. Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J Perinatol. 2009;29:79–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011;157:163–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Gantier MP. New perspectives in MicroRNA regulation of innate immunity. J Interferon Cytokine Res. 2010;30(2):83–9.

    Google Scholar 

  24. Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One. 2009;4:e7405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Ishihara K, Sasaki D, Tsuruda K, Inokuchi N, Nagai K, Hasegawa H, et al. Impact of miR-155 and miR-126 as novel biomarkers on the assessment of disease progression and prognosis in adult T-cell leukemia. Cancer Epidemiol. 2012;36:560–5.

    Article  PubMed  CAS  Google Scholar 

  26. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7:379–90.

    Article  PubMed  CAS  Google Scholar 

  28. Kollmann TR, Levy O, Montgomery RR, Goriely S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity. 2012;37:771–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Ygberg S, Nilsson A. The developing immune system - from foetus to toddler. Acta Paediatr. 2012;101:120–7.

    Article  PubMed  CAS  Google Scholar 

  30. Caldas JP, Marba ST, Blotta MH, Calil R, Morais SS, Oliveira RT. Accuracy of white blood cell count, C-reactive protein, interleukin-6 and tumor necrosis factor alpha for diagnosing late neonatal sepsis. J Pediatr (Rio J). 2008;84:536–42.

    Article  Google Scholar 

  31. Sherwin C, Broadbent R, Young S, Worth J, McCaffrey F, Medlicott NJ, et al. Utility of interleukin-12 and interleukin-10 in comparison with other cytokines and acute-phase reactants in the diagnosis of neonatal sepsis. Am J Perinatol. 2008;25:629–36.

    Article  PubMed  Google Scholar 

  32. Hodge G, Hodge S, Haslam R, McPhee A, Sepulveda H, Morgan E, et al. Rapid simultaneous measurement of multiple cytokines using 100 microl sample volumes–association with neonatal sepsis. Clin Exp Immunol. 2004;137:402–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Protonotariou E, Malamitsi-Puchner A, Rizos D, Sarandakou A, Makrakis E, Salamolekis E. Alterations in Thl/Th2 cytokine concentrations in early neonatal life. J Matern Fetal Neonatal Med. 2003;14:407–10.

    Article  PubMed  CAS  Google Scholar 

  34. Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012;24:1297–305.

    Article  PubMed  CAS  Google Scholar 

  35. Contreras J, Rao DS. MicroRNAs in inflammation and immune responses. Leukemia. 2012;26:404–13.

    Article  PubMed  CAS  Google Scholar 

  36. Harper KA, Tyson-Capper AJ. Complexity of COX-2 gene regulation. Biochem Soc Trans. 2008;36:543–5.

    Article  PubMed  CAS  Google Scholar 

  37. Pham H, Ekaterina Rodriguez C, Donald GW, Hertzer KM, Jung XS, Chang HH, et al. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells. Biochem Biophys Res Commun. 2013;439:6–11.

    Article  PubMed  CAS  Google Scholar 

  38. O’Connell RM, Rao DS Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312.

    Article  PubMed  CAS  Google Scholar 

  39. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007;129:147–61.

    Article  PubMed  CAS  Google Scholar 

  40. Stittrich AB, Haftmann C, Sgouroudis E, Kühl AA, Hegazy AN, Panse I, et al. The microRNA miR-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol. 2010;11:1057–62.

    Article  PubMed  CAS  Google Scholar 

  41. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol. 2011;12:861–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 2012;122:2871–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Gatsiou A, Boeckel JN, Randriamboavonjy V, Stellos K. MicroRNAs in platelet biogenesis and function: implications in vascular homeostasis and inflammation. Curr Vasc Pharmacol. 2012;10:524–31.

    Article  PubMed  CAS  Google Scholar 

  44. Zhu QY, Liu Q, Chen JX, Lan K, Ge BX. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol. 2010;185:7435–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant from the National Natural Science Foundation of China (Grant No. 81070518) to Prof. Yi Yang.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Jiang, S., Cao, Y. et al. Altered miRNAs Expression Profiles and Modulation of Immune Response Genes and Proteins During Neonatal Sepsis. J Clin Immunol 34, 340–348 (2014). https://doi.org/10.1007/s10875-014-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-014-0004-9

Keywords

Navigation