Aguilar-Islas A, Hurst MP, Buck KN, Sohst B, Smith GJ, Lohan MC, Bruland KW (2007) Micro- and macronutrients in the southeastern Bering Sea: insight into iron-replete and iron-depleted regime. Prog Oceanogr 73:99–126. https://doi.org/10.1016/j.pocean.2006.12.002
Article
Google Scholar
Alfultis MA, Martin S (1987) Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes 1978–1982. J Geophys Res Oceans 92:13013–13028
Article
Google Scholar
Anderson RF (2020) GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annu Rev Mar Sci 12:49–85. https://doi.org/10.1146/annurev-marine-010318-095123
Article
Google Scholar
Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeochem Cycles 8:65–80
Article
Google Scholar
Bishop JKB, Davis RE, Sherman JT (2002) Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817–821
Article
Google Scholar
Bograd SJ, Thomson RE, Rabinovich AB, Leblond PH (1999) Near-surface circulation of the northeast Pacific Ocean derived from WOCE-SUP satellite-tracked drifters. Deep Sea Res II 46:2371–2403
Article
Google Scholar
Bowie AR, Achterberg EP, Mantoura RFC, Worsfold PJ (1998) Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection. Anal Chim Acta 361:189–200
Article
Google Scholar
Boyd PW, Ellwood MJ (2010) The biogeochemical cycle of iron in the ocean. Nature Geo 3:675–682
Article
Google Scholar
Boyd PW, Wong CS, Merrill J, Whitney F, Snow J, Harrison PJ, Gower J (1998) Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: is there a connection? Global Biogeochem Cycles 12:429–441
Article
Google Scholar
Boyd PW, Law CS, Wong CS, Nojiri Y, Tsuda A, Levasseur M, Takeda S, Rivkin R, Harrison PJ, Strzepek R, Gower J, McKay RM, Abraham E, Arychuk M, Barwell-Clarke J, Crawford W, Hale M, Harada K, Johnson K, Kiyosawa H, Kudo I, Marchetti A, Miller W, Needoba J, Nishioka J, Ogawa H, Page J, Robert M, Saito H, Sastri A, Sherry N, Soutar T, Sutherland N, Taira Y, Whitney F, Wong SE, Yoshimura T (2004) The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428:549–553
Article
Google Scholar
Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Busseler KO, Coale KH, Cullen JJ, de Baar HJW, Flows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617
Article
Google Scholar
Boyd PW, Gall MP, Silver MW, Coale SL, Bidigare RR, Bishop JLKB (2008) Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies. Deep Sea Res Part II 55:1578–1593
Article
Google Scholar
Boyd PW, Mackie DS, Hunter KA (2010) Aerosol iron deposition to the surface ocean-Modes of iron supply and biological responses. Mar Chem 120:128–143. https://doi.org/10.1016/j.marchem.2009.01.008
Article
Google Scholar
Boyle E, Edmond JM (1975) Copper in surface seawaters south of New Zealand. Nature 253:107–109
Article
Google Scholar
Broecker WS (1991) The great ocean conveyor. Oceanogr 4(2):79–89
Article
Google Scholar
Broecker WS, Peng T-H (1982) Tracers in the sea. Lamont-Doherty Geological Observatory, Columbia University, 690 pp. https://doi.org/10.2307/1309641
Brown MT, Lippiatt SM, Lohan MC, Bruland KW (2012) Trace metal distributions withn a Sitka eddy in the northern Gulfof Alaska. Limnol Oceanogr 57(2):503–518. https://doi.org/10.4319/lo.2012.57.2.0503
Article
Google Scholar
Bruland KW, Rue EL (2001) Analytical methods for thedetermination of concentrations and speciation of iron. In: Turner DR, Hunter KA (eds) Biogeochemistry of Fe in Seawater. SCOR-IUPAC series. J Wiley, Baltimore, pp 255–289 (Chapter 6)
Google Scholar
Bruland KW, Franks RP, Knauer GA, Martin JH (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc, and nickel at the nanogram per liter level in sea-water. Anal Chim Acta 105:233–245
Article
Google Scholar
Bruland KW, Orians KJ, Cowen JP (1994) Reactive trace metal in the stratified central North Pacific. Geochim Cosmochim acta 58(15):3171–3182
Article
Google Scholar
Buck NK, Bruland KW (2007) The physicochemical speciation of dissolved iron in the Bering Sea. Alaska Limnol Oceanogr 52(5):1800–1808
Article
Google Scholar
Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Van Mooy B, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570. https://doi.org/10.1126/science.1137959
Article
Google Scholar
Byrne RH, Kester DR (1976) Solubility of hydrous ferric oxide and iron speciation in seawater. Mar Chem 4:255–274
Article
Google Scholar
Chierici M, Fransson A, Nojiri Y (2006) Biogeochemical processes as drivers of surface fCO2 in contrasting provinces in the subarctic North Pacific Ocean. Global Biogeochem Cycles 20:GB1009. https://doi.org/10.1029/2004GB002356
Article
Google Scholar
Chisholm SW, Morel, MM (1991) What controls phytoplankton production in nutrient-rich areas of the open sea? Limnol Oceanogr 36(8): preface
Cid AP, Urushihara S, Minami T, Norisuye K, Sohrin Y (2011) Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf. J Oceanogr 67(6):747–764
Article
Google Scholar
Coale KH, Worsfold P, de Baar HJW (1999) Iron age in oceanography. Eos 80(34):377–382
Article
Google Scholar
Coale KH et al (2015) John Holland Martin from picograms to petagrams and copepods to climate. Bulletin Limol Oceanogr 24:1–17
Article
Google Scholar
Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511:212–215
Article
Google Scholar
Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East pacific Ocean-insight from stable isotopes. Geochem Cosmochim Acta 164:262–283. https://doi.org/10.1016/j.gca.2015.05.023
Article
Google Scholar
Craig H, Turekian KK (1980) The GEOSECS program: 1976–1979. Earth Planet Sci Let 49:263–265
Article
Google Scholar
Cullen JJ (1991) Hypotheses to explain high-nutrient conditions in the open sea. Limno Oceanogr 36(8):1578–1599
Article
Google Scholar
Cullen JT, Chong M, Ianson D (2009) British Columbian continentalshelf as a source of dissolved iron to the subarcticnortheast Pacific Ocean. Global Biogeochem Cycles 23:GB4012. https://doi.org/10.1029/2008GB003326
Article
Google Scholar
Cutter GA, Bruland KW (2012) Rapid and non-contaminating sampling system for trace elements in global ocean surveys. Limnol Oceanogr Methods 10:425–436. https://doi.org/10.4319/lom.2012.10.425
Article
Google Scholar
de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barbar RT, Brzezinski MA, Buesseler KO, Boye M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock W, Laan P, Lancelot C, Law C, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geophys Res Ocean. https://doi.org/10.1029/2004JC002601
Article
Google Scholar
de Baar HJW, Timmermans KR, Laan P, De Porto HH, Ober S, Blom JJ, Bakker MC, Schilling J, Sarthou G, Smit MG, Klunder M (2008) Titan: a new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Mar Chem 111:4–21. https://doi.org/10.1016/j.marchem.2007.07.009
Article
Google Scholar
Dobashi R, Ueno H, Okada Y, Tanaka T, Nishioka J, Hirawake T, Ooki A, Itoh S, Hasegawa D, Sasai Y, Sasaki H, Yasuda I (2021) Observations of anticyclonic eddies in the western subarctic North Pacific. J Oceanogr. https://doi.org/10.1007/s10872-020-00586-y
Article
Google Scholar
Duce RA (1989) SEAREX; The sea/air exchange program. Chem Oceanogr 10. Academic Press, London, p 404
Google Scholar
Duce RA, Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36:1715–1726
Article
Google Scholar
Elrod VA, Berelson WM, Coale K, Johnson KS (2004) The flux of iron from continental shelf sediment: a missing source for global budget. Geophys Res Lett 31:L12307. https://doi.org/10.1029/2004GL020216
Article
Google Scholar
Favorite F, Dodimead AJ, Nasu K (1976) Oceanography of the subarctic Pacific region. 1960–1971. Bull Int North Pac Fish Comm 33:1–187
Google Scholar
Fitzsimmons JN, Boyle EA (2014) Both soluble and colloidal iron phases control dissolved iron variability in the tropical north Atlantic ocean. Geochim Cosmochim Acta 125:539–550. https://doi.org/10.1016/j.gca.2013.10.032
Article
Google Scholar
Fitzsimmons JN, Carrasco GG, Wu J, Roshan S, Hatta M, Measures CI, Conway TM, John SG, Boyle EA (2015) Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep Sea Res II 116:130–151. https://doi.org/10.1016/j.dsr2.2014.11.014
Article
Google Scholar
Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas SL, Toner BM, German CR, Sherrell RM (2017) Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nature Geo 10:195–201. https://doi.org/10.1038/ngeo2900
Article
Google Scholar
Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) Seasonal cycle of phytoplankton community structure and photophysiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900
Article
Google Scholar
Fukamachi Y, Mizuta G, Ohshima KI, Talley LD, Riser SC, Wakatsuchi M (2004) Transport and modification processes of dense shelf water revealed bylong-term moorings off Sakhalin in the Sea of Okhotsk. J Geophys Res Oceans 109:C09S10. https://doi.org/10.1029/2003JC001906
Article
Google Scholar
GEOTRACES Planning Group (2006) GEOTRACES Science Plan. Baltimore, Maryland: Scientific Committee on Oceanic Research. https://geotracesold.sedoo.fr/libraries/documents/Science_plan.pdf
Gladyshev S, Martin S, Riser S, Figureurkin A (2000) Dense water production on the northern Okhotsk shelves: comparison of ship-based spring-summer observations for 1996 and 1997 with satellite observations. J Geophys Res Oceans 105:26281–26299
Article
Google Scholar
Gledhill M, van den Berg CMG (1994) Determination of complexation of iron (III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47:41–54. https://doi.org/10.1016/0304-4203(94)90012-4
Article
Google Scholar
Gordon RM, Martin JM, Knauer GA (1982) Iron in north-east Pacific waters. Nature 299:611–612
Article
Google Scholar
Goto Y, Yasuda I, Nagasawa M (2016) Turbulence estimation using fast-response thermistors attached to a free-fall vertical microstructure profiler. J Atmos Ocean Tech 33:2065–2078. https://doi.org/10.1175/JTECH-D-15-0220.1
Article
Google Scholar
Goto Y, Yasuda I, Nagasawa M (2018) Comparison of turbulence intensity from CTD-attached and free-fall microstructure profilers. J Atmos Ocean Tech 35:147–162. https://doi.org/10.1175/JTECH-D-17-0069.1
Article
Google Scholar
Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles 11:235–266
Article
Google Scholar
Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, GowerJFR KMT, Pena MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37:L19604. https://doi.org/10.1029/2010GL044629
Article
Google Scholar
Hansell DA, Carlson CA, Suzuki Y (2002) Dissolved organic carbon export with North Pacific Intermediate Water formation. Global Biogeochem Cycles. https://doi.org/10.1029/2000GB001361
Article
Google Scholar
Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific. Prog Oceanogr 43:205–234
Article
Google Scholar
Harrison PJ, Whitney FA, Tsuda A, Saito H, Tadokoro K (2004) Nutrient and plankton dynamics in the NE and NW gyres of the subarctic Pacific Ocean. J Oceanogr 60:93–117
Article
Google Scholar
Hart TJ (1934) On the phytoplankton of the southeast Atlantic and the Bellingshausen Sea, 1929–1931. Discovery Reports 8:1–268
Google Scholar
Hart TJ (1942) Phytoplankton periodicity in Antarctic surface waters. Discovery Report 21:261–365
Google Scholar
Hassler CS, Schoemann V, Nichols CM, Butler ECV, Boyd PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci USA 108:1076–1081. https://doi.org/10.1073/pnas.1010963108
Article
Google Scholar
Hassler CS, van den Berg CMG, Boyd PW (2017) Toward a regional classification to provide a more inclusive examination of the ocean biogeochemistry of iron-binding ligands. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00019
Article
Google Scholar
Hattori-Saito A, Nishioka J, Ono T, McKay RML, Suzuki K (2010) Iron deficiency in micro-sized diatom in the Oyashio region of the western subarctic Pacific during spring. J Oceanogr 66:105–115
Article
Google Scholar
Henson SA (2007) Water column stability and spring bloom dynamics in the Gulf of Alaska. J Mar Res 65:715–736
Article
Google Scholar
Hernes PJ, Benner R (2002) Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep Sea Res I 49:2119–2132
Article
Google Scholar
Hioki N, Kuma K, Morita Y, Sasayama R, Ooki A, Kondo Y, Obata H, Nishioka J, Yamashita Y, Nishino S, Kikuchi T, Aoyama M (2014) Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean. Sci Rep 4:6765
Google Scholar
Honda MC (2003) Biological pump in northwestern North Pacific. J Oceanogr 59:671–684
Article
Google Scholar
Hunt GL Jr, Allen BM, Angliss RP, Baker T, Bond N, Buck G, Byrd GV, Coyle KO, Devol A, Eggers DM, Eisner L, Feely R, Fitzgerald S, Fritz LW, Gritsay EV, Ladd C, Lewis W, Mathis J, Mordy CW, Mueter F, Napp J, Sherr E, Shull D, Stabeno P, Stepanenko MA, Strom S, Whitledge TE (2010) Status and trends of the Bering Sea region, 2003–2008, pp 196–267 in S.M. McKinnell and M.J. Dagg [Eds.] Marine Ecosystems of the North Pacific Ocean, 2003–2008. PICES Special Publication 4:393
Hurst MP, Bruland KW (2007) An investigation into the exchange of iron and zinc between soluble, colloidal, and particulate size-fractions in shelf waters using low-abundance isotopes as tracers in shipboard incubation experiments. Mar Chem 103:211–226
Article
Google Scholar
Hurst MP, Aguila-Islas AM, Bruland KW (2010) Iron in the southeast Bering Sea: elevated leachable particulate Fe in shelf bottom waters as an important source for surface waters. Cont Shelf Res 30:467–480. https://doi.org/10.1016/j.csr.2010.01.001
Article
Google Scholar
Imai K, Nojiri Y, Tsurushima N, Saino T (2002) Time series of seasonal variation of primary productivity at station KNOT (44° N, 155° E) in the sub-arctic western North Pacific. Deep Sea Res II 49:5395–5408
Article
Google Scholar
Isada T, Hattori-Saito A, Saito H, Ikeda T, Suzuki K (2010) Primary productivity and its bio-optical modeling in the Oyashio region, NW Pacific during the spring bloom 2007. Deep Sea Res II 57:1653–1664
Article
Google Scholar
Isada T, Hattori-Saito A, Saito H, Kondo Y, Nishioka J, Kuma K, Hattori H, McKay RML, Suzuki K (2019) Responses of phytoplankton assemblages to iron availability and mixing water masses during the spring bloom in the Oyashio region, NW Pacific. Limnol Oceanogr 64:197–216. https://doi.org/10.1002/lno.11031
Article
Google Scholar
Ito A, Shi Z (2016) Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos Chem Phys 16:85–99. https://doi.org/10.5194/acp-16-85-2016
Article
Google Scholar
Itoh M, Ohshima KI, Wakatsuchi M (2003) Distribution and formation of Okhotsk Sea intermediate water. An analysis of isopycnal climatological data. J Geophys Res 108(C8):3258. https://doi.org/10.1029/2002JC001590
Article
Google Scholar
Itoh S, Yasuda I, Nakatsuka T, Nishioka J, Volkov YN (2010) Fine- and microstructure observation in the Urup Strait, Kuril Islands, during August 2006. J Geophys Res 115(C8):C08004. https://doi.org/10.1029/2002JC005629
Article
Google Scholar
Itoh S, Yasuda I, Yagi M, Osafune S, Kaneko H, Nishioka J, Nakatsuka T, Volkov YN (2011) Strong vertical mixing in the Urup Strait. Geophys Res Lett 38:L16607. https://doi.org/10.1029/2011GL048507
Article
Google Scholar
Iwamoto Y, Yumimoto K, Toratani M, Tsuda A, Miura K, Uno I, Uematsu M (2011) Biogeochemical implications of increased mineral particle concentrations in surface waters of the northwestern North Pacific during an Asia dust event. Geophys Res Lett 38:L01604. https://doi.org/10.1029/2010GL045906
Article
Google Scholar
Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, LaRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry. Science 308:67–71
Article
Google Scholar
Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161
Article
Google Scholar
Johnson KS, Chavez FP, Friederich GE (1999) Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398:697–700
Article
Google Scholar
Johnson WK, Millar LA, Sutherland NE, Wong CS (2005) Iron transport by mesoscale Haida eddies in the Gulf of Alaska. Deep-Sea Res II 52:933–953
Article
Google Scholar
Kanna N, Nishioka J (2016) Bio-availability of iron derived from subarctic first-year sea ice. Mar Chem 186:189–197. https://doi.org/10.1016/j.marchem.2016.09.009
Article
Google Scholar
Kanna N, Toyota T, Nishioka J (2014) Iron and macro-nutrient concentrations in sea ice and their impact on the nutritional status of surface waters in the southern Okhotsk Sea. Prog Oceanogr 126:44–57. https://doi.org/10.1016/j.pocean.2014.04.012
Article
Google Scholar
Kanna N, Sibano Y, Toyota T, Nishioka J (2018) Winter iron supply processes fueling spring phytoplankton growth in a sub-polar marginal sea, the Sea of Okhotsk: importance of sea ice and the East Sakhalin current. Mar Chem 206:109–120. https://doi.org/10.1016/j.marchem.2018.08.006
Article
Google Scholar
Katsumata K, Yasuda I (2010) Estimate of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific. J Oceanogr 66:489–504
Article
Google Scholar
Katsumata K, Ohshima KI, Kono T, Itoh M, Yasuda I, Volkov YN, Wakatsuchi M (2004) Water exchange and tidal currents through the Bussol’ Strait revealedby direct current measurements. J Geophys Res Oceans 117:C09S06. https://doi.org/10.1029/2003JC001864
Article
Google Scholar
Kawabe M, Fujio S (2010) Pacific Ocean circulation based on observation. J Oceanogr 66:389–403
Article
Google Scholar
Kawakami H, Honda MC, Matsumoto K, Wakita M, Kitamura M, Fujiki T, Watanabe S (2015) POC fluxes estimated from 234Th in late spring-early summer in the western subarctic North Pacific. J Oceanogr 71:311–324
Article
Google Scholar
Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. https://doi.org/10.1146/annurev.marine.010908.163855
Article
Google Scholar
Kim T, Obata H, Nishioka J, Gamo T (2017) Distribution of dissolved zinc in the western and central subarctic North Pacific. Glob Biogeochem Cycle 31:1454–1468. https://doi.org/10.1002/2017GB005711
Article
Google Scholar
Kimura N, Wakatsuchi M (2000) Relationship between sea-ice motion and geostrophic wind in the Northen hemisphere. Geophys Res Lett 27:3735–3738
Article
Google Scholar
Kitani K (1973) An oceanographic study of the Sea of Okhotsk, particularly in regard to cold waters. Bullet Far Seas Fisheries Res Laboratory 9:45–47
Google Scholar
Kitayama S, Kuma K, Manabe E, Sugie K, Takata H, Isoda Y, Toya K, Saito S, Takagi S, Kamei Y, Sakaoka K (2009) Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter. J Geophys Res 114:C08019. https://doi.org/10.1029/2008JC004754
Article
Google Scholar
Kondo Y, Takeda S, Furuya K (2012) Distinct trends in dissolved Fe speciation between shallow and deep waters in the Pacific Ocean. Mar Chem 134–135:18–28. https://doi.org/10.1016/j.marchem.2012.03.002
Article
Google Scholar
Kondo Y, Obata H, Hioki N, Ooki A, Nishino S, Kikuchi T, Kuma K (2016) Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012. Deep Sea Res I 116:236–252
Article
Google Scholar
Kondo Y, Bamba R, Obata H, Nishioka J, Takeda S (2021) Distinct profiles of size-fractionated iron-binding ligands between the eastern and western subarctic Pacific. Sci Rep 11:2053. https://doi.org/10.1038/s41598-021-81536-6
Article
Google Scholar
Kuma K, Nishioka J, Matsunaga K (1996) Controls on Iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407
Article
Google Scholar
Kurisu M, Takahashi Y, Iizuka T, Uematsu M (2016) Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean. J Geophys Res 121:11119–11136. https://doi.org/10.1002/2016JD024957
Article
Google Scholar
Kuroda H, Toya Y, Watanabe T, Nishioka J, Hasegawa D, Taniuchi Y, Kuwata A (2019) Influence of Coastal Oyashio water on massive spring diatom blooms in the Oyashio area of the North Pacific Ocean. Prog Oceanogr 175:328–344. https://doi.org/10.1016/j.pocean.2019.05.004
Article
Google Scholar
Laglera LM, van den Berg CMG (2009) Evidence for geochemical control of iron by humic substances in seawater. Limnol Oceanogr 54:610–619
Article
Google Scholar
Laglera LM, Battaglia G, van den Berg CMG (2011) Effect of humic substances on the iron speciation in natural waters by CLE/CSV. Mar Chem 127:134–143
Article
Google Scholar
Lam PJ, Bishop JKB (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett 35:L07608. https://doi.org/10.1029/2008GL033294
Article
Google Scholar
Lam PJ, Bishop JKB, Henning CC, Marcus MA, Waychunas GA, Fung IY (2006) Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron. Global Biogeochem Cycle 20:GB1006. https://doi.org/10.1029/2005GB002557
Article
Google Scholar
Lam PJ, Ohnemus DC, Marcus MA (2012) The speciation of marine particulate iron adjacent to active and passive continental margins. Geochim Cosmochim Acta 80:108–124
Article
Google Scholar
Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Acta 51:29–43
Article
Google Scholar
Landing WM, Paytan A (2010) Aerosol chemistry and impact on the ocean. Mar Chem 120:1–3
Article
Google Scholar
Lannuzel D, de Jong J, Schoemann V, Trevena A, Tison J-L, Chou L (2007) Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556:476–483
Article
Google Scholar
Lippiatt SM, Lohan MC, Bruland KW (2010) The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar Chem 121:187–199. https://doi.org/10.1016/j.marchem.2010.04.007
Article
Google Scholar
Lohan MC, Bruland KW (2008) Elevated Fe (II) and dissolved Fe in hypoxic shelf waters off Oregon and Washington: an enhanced source of iron to coastal upwelling regimes. Environ Sci Technol 42:6462–6468. https://doi.org/10.1021/es800144j
Article
Google Scholar
Long Y, Zhou X-H, Guo X (2019) The Oyashio nutrient stream and its nutrient transport to the mixed water region. Geophys Res Lett 46:1513–1520. https://doi.org/10.1029/2018GL081497
Article
Google Scholar
Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271
Article
Google Scholar
Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce A, Jickells TD, Kubliay N, Prospero JM, Tegen I (2005) Atmosphericglobal dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19:GB4025. https://doi.org/10.1029/2004GB002402
Article
Google Scholar
Martin JH (1990) Glacial-Interglacial CO2 Change: the iron hypothesis. Paleoceanography 5(1):1–13
Article
Google Scholar
Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343
Article
Google Scholar
Martin JH, Gordon RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res I 35(2):177–196
Article
Google Scholar
Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res I 36(5):649–680. https://doi.org/10.1016/0198-0149(89)90144-1
Article
Google Scholar
Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles. https://doi.org/10.1029/GB004i001p00005
Article
Google Scholar
Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36(8):1793–1802
Article
Google Scholar
Martin S, Drucker R, Yamashita K (1998) The production of ice and dense shelfwater in the Okhotsk Sea polynyas. J Geophys Res Oceans 103:27771–27782
Article
Google Scholar
Martin P et al (2013) Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX. Global Biogeochem Cycle 27:871–881. https://doi.org/10.1002/gbc.20077
Article
Google Scholar
Matsumoto K (2007) Radiocarbon-based circulation age of the world oceans. J Geophys Res 112:C09004. https://doi.org/10.1029/2007JC004095
Article
Google Scholar
Matsumoto K, Key RM (2004) Natural radiocarbon distribution in the deep Ocean. In: M Shiyomi et al. (Eds.). Global environmental change in the ocean and on land. Terapub, pp 45–58
Matsumoto K, Honda MC, Sasaoka K, Wakita M, Kawakai H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res Oceans 119:6523–6534. https://doi.org/10.1002/2014JC009982
Article
Google Scholar
Measures CI, Yuan J, Resing JA (1995) Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Mar Chem 50:3–12
Article
Google Scholar
Measures CI, Brown MT, Vink S (2005) Dust deposition to thesurface waters of the western and central North Pacific inferred fromsurface water dissolved aluminium concentrations. Geochem Geophys Geosyst 6:Q09M03. https://doi.org/10.1029/2005GC000922
Article
Google Scholar
Measures CI, Landing WM, Brown MT, Burck CS (2008) A commercially available rosette system for trace metal-clean sampling. Limnol Oceanogr Methods 6:384–394. https://doi.org/10.4319/lom.2008.6.384
Article
Google Scholar
Misumi K, Tsumune D, Yoshida Y, Uchimoto K, Nakamura T, Nishioka J, Mitsudera H, Bryan F, Lindsay K, Moore J, Doney SC (2011) Mechanisms controlling dissolved iron distribution in the North Pacific: a model study. J Geophys Res. https://doi.org/10.1029/2010JG001541
Article
Google Scholar
Misumi K, Lindsay K, Moor JK, Doney S, Tsumune D, Yoshida Y (2013) Humic substances may control dissolved iron distributions in the global ocean: implications from numerical simulations. Glob Biogeochem Cycle 27:450–462. https://doi.org/10.1002/gbc.20039
Article
Google Scholar
Misumi K, Nishioka J, Obata H, Tsumune D, Tsubono T, Long MC, Lindsay K, Moor JK (2021) Slowly sinking particles underlie dissolved iron transport across the Pacific Ocean. Glob Biogeochem Cycle. https://doi.org/10.1029/2020GB006823
Article
Google Scholar
Mochizuki M, Shiga N, Saito M, Imai K, Nojiri Y (2002) Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep Sea Res II 49:5241–5439
Article
Google Scholar
Moore WS (1984) Review of the GEOSECS project. Nuclear Instrum Method Phys Res 223:459–465
Article
Google Scholar
Nagao S, Terashima M, Kodama H, Kim VI, Shesterkin PV, Makhinov AN (2007) Migration behavior of Fe in the Amur River basin. Report Amur-Okhotsk Project 4:37–48
Google Scholar
Nagata Y, Ohtani K, Kashiwai M (1992) Subarctic gyre in the North Pacific Ocean. Umino-Kenkyu 1(3):75–104
Google Scholar
Nakabayashi S, Kuma K, Sasaoka K, Saito S, Mochizuki M, Shiga N (2002) Variation in iron(III) solubility and iron concentration in the northwestern North Pacific Ocean. Limnol Oceanogr 47(3):885–892
Article
Google Scholar
Nakamura T, Awaji T (2004) Tidally induced diapycnal mixing in the Kuril Straitsand its role in water transformation and transport: a three-dimensionalnon-hydrostatic model experiment. J Geophys Res Oceans 109:C09S07. https://doi.org/10.1029/2003JC001850
Article
Google Scholar
Nakamura T, Toyoda T, Ishikawa Y, Awaji T (2006) Effect of tidal mixing at the Kuril Straits on North Pacific ventilation: adjustment of the intermediate layer revealed from numerical experiments. J Geophys Res 111(C4):C04003. https://doi.org/10.1029/2005JC003142
Article
Google Scholar
Nakanowatari T, Nakamura T, Uchimoto K, Nishioka J, Mitsudera H, Wakatsuchi M (2017) Importance of Ekman transport and gyre circulation change on seasonal variation of surface dissolved iron in the western subarctic North Pacific. J Geophys Res- Ocean 122(5):4364–4391. https://doi.org/10.1002/2016JC012354
Article
Google Scholar
Nakatsuka T, Yoshikawa C, Toda M, Kawamura K, Wakatsuchi M (2002) An extremely turbid intermediate water in the Sea of Okhotsk: implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophys Res Lett 29(16):1757. https://doi.org/10.1029/2001GL014029
Article
Google Scholar
Nakatsuka T, Toda M, Kawamura K, Wakatsuchi M (2004) Dissolved andparticulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior. J Geophys Res 109:C09S14. https://doi.org/10.1029/2003JC001909
Article
Google Scholar
Nakayama Y, Kuma K, Fujita S, Sugie K, Ikeda T (2010) Temporal variability and bioavailability of iron and other nutrients during the spring phytoplankton bloom in the Oyashio region. Deep Sea Res II 57:1618–1629. https://doi.org/10.1016/j.dsr2.2010.03.006
Article
Google Scholar
Nishioka J, Obata H (2017) Dissolved iron distribution in the western and central subarctic Pacific: HNLC water formation and biogeochemical processes. Limnol Oceanogr 62(5):2004–2022
Article
Google Scholar
Nishioka J, Takeda S, Wong CS, Johnson K (2001) Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron. Mar Chem 74:158–179
Article
Google Scholar
Nishioka J, Takeda S, Kudo I, Tsumune D, Yoshimura T, Kuma K, Tsuda A (2003) Size fractionated iron distributions and iron-limitation processes in the subarctic NW Pacific. Geophys Res Lett 30:1730. https://doi.org/10.1029/2002GL016853
Article
Google Scholar
Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnson WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. https://doi.org/10.1029/2006JC004055
Article
Google Scholar
Nishioka J, Ono T, Saito H, Sakaoka K, Yoshimura T (2011) The annual cycle of surface iron and the source of iron supporting the spring diatom bloom in the Oyashio region, western subarctic Pacific. J Geophys Res 116:C02021. https://doi.org/10.1029/2010JC006321
Article
Google Scholar
Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an island chain controls oceanic biogeochemical cycles. Global Biogeochem Cycle 27:920–929
Article
Google Scholar
Nishioka J, Mitsudera H, Yasuda I, Liu H, Nakatsuka T, Volkov YN (2014a) Biogeochemical and physical processes in the Sea of Okhotsk and the linkage to the Pacific Ocean. Prog Oceanogr 126:1–7. https://doi.org/10.1016/j.pocean.2014.04.027
Article
Google Scholar
Nishioka J, Nakatsuka T, Ono K, Volkov YN, Scherbinin A, Shiraiwa T (2014b) Quantitative evaluation of iron transport processes in the Sea of Okhotsk. Prog Oceanogr 126:180–193
Article
Google Scholar
Nishioka J, Obata H, Ogawa H, Ono K, Yamashita Y, Lee KJ, Takeda S, Yasuda I (2020) Sub-polar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc Natl Acad Sci USA 117(23):12665–12673. https://doi.org/10.1073/pnas.2000658117
Article
Google Scholar
Obata H, Karatani H, Nakayama E (1993) Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528. https://doi.org/10.1021/ac00059a007
Article
Google Scholar
Ohshima KI, Martin S (2004) Introduction to special section: oceanography of theOkhotsk Sea. J Geophys Res 109:C09S01. https://doi.org/10.1029/2004JC002604
Article
Google Scholar
Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surfacecirculation and tidal currents of the Okhotsk Sea observed with satellite-trackeddrifters. J Geophys Res. https://doi.org/10.1029/2001JC001005
Article
Google Scholar
Okamoto S, Hirawake T, Saito S (2010) Internal variability in the magnitude and timing of the spring bloom in the Oyashio region. Deep Sea Res II 57:1608–1617. https://doi.org/10.1016/j.dsr2.2010.03.005
Article
Google Scholar
Ono K, Ohshima KI, Kono T, Katsumata K, Yasuda I, Wakatsuchi M (2013) Distribution of vertical diffusivity in the Bussol’ Strait: a mixing hot spot in the North Pacific. Deep Sea Res I 79:62–73
Article
Google Scholar
Parsons TR, Lalli CM (1998) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific oceans. Oceanogr Mar Biol Annu Rev 26:317–359
Google Scholar
Patterson CC (1965) Contaminated and natural lead environments of man. Arch Environ Health 11:344–363
Article
Google Scholar
Pinedo-González P, Hawco NJ, Bundy RM, Armbrust EV, Follows MJ, Cael BB, White AE, Ferron S, Karl DM, John SG (2020) Anthropogenic Asian aerosol provide Fe to the North Pacific Ocean. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2010315117
Article
Google Scholar
Read RK, Laird NP (1977) A study of subarctic boundary region in the western North Pacific. J Oceanogr Society of Japan 33:247–253
Article
Google Scholar
Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, Tagliabue A (2015) Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523:200–203. https://doi.org/10.1038/nature14577
Article
Google Scholar
Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/ adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138
Article
Google Scholar
Saito H, Tsuda A, Kasai H (2002) Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res II 49:5463–5486
Article
Google Scholar
Sakurai Y (2007) An overview of Oyashio ecosystem. Deep Sea Res Part II 54:2526–2542
Article
Google Scholar
Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton
Book
Google Scholar
Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60
Article
Google Scholar
Schlitzer R (2004) Export production in equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J Oceanogr 60:53–62
Article
Google Scholar
Shigemitsu M, Nishioka J, Watanabe YW, Yamanaka Y, Nakatsuka T, Volkov YN (2013) Fe/Al ratios of suspended particulate matter from intermediate water in the Okhotsk Sea: implications for long-distance lateral transport of particulate Fe. Mari Chem 157:41–48
Article
Google Scholar
Shiomoto A, Asami H (1999) High-West and Low-East distribution patterns of chlorophyll a. primary productivity and diatoms in the subarctic North Pacific surface waters, mid winter 1996. J Oceanogr 55:493–503
Article
Google Scholar
Shiomoto A, Ishida Y, Tamaki M, Yamanaka Y (1998) Primary production and chlorophyll a in the NW pacific ocean in summer. J Geophys Res 103:24651–24661
Article
Google Scholar
Shiozaki T, Ito S, Takahashi K, Saito H, Nagata T, Furuya K (2014) Regional variability of factors controlling the onset timing and magnitude of spring algal blooms in the northwestern North Pacific. J Geophys Res 119:1–13. https://doi.org/10.1002/2013JC009187
Article
Google Scholar
Shiraiwa T (2012) “Giant Fish-Breeding Forest”: a new environmental system linking continental watershed with open water. Global Environmental Studies book series 77–85
Sigman DM, Fripiat F, Studer AS, Kemeny PC, Martínez-García A, Hain MP, Ai X, Wang X, Ren H, Hang GH (2021) The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quatern Sci Rev 254:106732. https://doi.org/10.1016/j.quascirev.2020.106732
Article
Google Scholar
Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. Trends Anal Chem 30(8):1291–1307. https://doi.org/10.1016/j.trac.2011.03.006
Article
Google Scholar
Sohrin Y, Urushihara S, Nakatsuka S, Kono T, Higo E, Minami T, Norisuye K, Umetani S (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelation resin. Anal Chem 80:6267–6273. https://doi.org/10.1021/ac800500f
Article
Google Scholar
Stabeno PJ, Schumacher JD, Ohtani K (1999) The physical oceanography of the Bering Sea. Dynamics of the Bering Sea 1–59
Stoll H (2020) 30 years of the iron hypothesis of ice ages. Nature 578:370–371
Article
Google Scholar
Sugie K, Kuma K, Fujita S, Nakayama Y, Ikeda T (2010) Nutrient and diatom dynamics during late winter and spring in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res II 57:1630–1642
Article
Google Scholar
Sugie K, Nishioka J, Kuma K, Volkov YN, Nakatsuka T (2013) Availability of particulate Fe to phytoplankton in the Sea of Okhotsk. Mar Chem 152:20–31. https://doi.org/10.1016/j.marchem.2013.03.005
Article
Google Scholar
Suzuki K, Liu H, Saino T, Obata H, Takano M, Okamura K, Sohrin Y, Fujishima Y (2002) East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnol Oceanogr 47(6):1581–1594
Article
Google Scholar
Suzuki K, Hattori-Saito A, Sekiguchi Y, Nishioka J, Sigemitsu M, Isada T, Liu H, McKay RM (2014) Spatial variability in iron nutritional status of large diatoms in the Sea of Okhotsk with special reference to the Amur river discharge. Biogeosciences 11:2503–2517. https://doi.org/10.5194/bg-11-2503-2014
Article
Google Scholar
Tagliabue A, Aumont O, Bopp L (2014) The impact of different external sources of iron in the global carbon cycle. Geophys Res Lett 41:920–926. https://doi.org/10.1002/2013GL059059
Article
Google Scholar
Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito M (2017) The integral role of iron in ocean biogeochemistry. Nature 543:51–59
Article
Google Scholar
Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622
Article
Google Scholar
Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzingerm A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II 56:554–577
Article
Google Scholar
Takata H, Kuma K, Saito Y, Chikira M, Saito S, Isoda Y, Takagi S, Sakaoka K (2006) Comparing the vertical distribution of iron in the eastern and western North Pacific Ocean. Geophys Res Lett 33:L02613. https://doi.org/10.1029/2005GL024538
Article
Google Scholar
Takeda S (2011) Iron and phytoplankton growth in the subarctic North Pacific. Aqua BioSci Monogr 4(2):41–93. https://doi.org/10.5047/absm.2011.00402.0041
Article
Google Scholar
Takeda S, Nishioka J, Wong CS, Whitney FA, Johnson WK, Sotuar TJ (1999) Application of open-ocean enclosures to study the control of biological CO2 Pump in the subarctic North Pacific Ocean. Proceeding, CO2 in the Ocean, Tsukuba 1999
Talley LD (1991) An Okhotsk Sea Water anomaly: Implications for ventilation in the North Pacific. Deep Sea Res I 38:S171–S190
Article
Google Scholar
Talley LD (2013) Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans. Oceanogr 26(1):80–97. https://doi.org/10.5670/oceanog.2013.07
Article
Google Scholar
Tanaka T, Yasuda I, Kuma K, Nishioka J (2012a) Vertical turbulent iron flux sustains the Green Belt along the shelf break in the southeastern Bering Sea. Geophys Res Lett 39:L08603. https://doi.org/10.1029/2012GL051164
Article
Google Scholar
Tanaka Y, Yasuda I, Hasumi H, Tatebe H, Osafune S (2012b) Effects of the 18.6-year modulation of tidal mixing on the North Pacific bidecadal climate variability in a coupled climate model. J Climate 25:7625–7642
Article
Google Scholar
Tanaka T, Yasuda I, Tanaka Y, Carter GS (2013) Numerical study on tidal mixing along the shelf break in the Green Belt in the southeastern Bering Sea. J Geophys Res 118:6525–6542. https://doi.org/10.1002/2013JC009113
Article
Google Scholar
Tanaka T, Yasuda I, Kuma K, Nishioka J (2017) Evaluation of the biogeochemical impact of iron-rich shelf water to the Green Belt in the southeastern Bering Sea. Conti Shelf Res 143:130–138. https://doi.org/10.1016/j.csr.2016.11.008
Article
Google Scholar
Tani H, Nishioka J, Kuma K, Takata H, Yamashita Y, Tanoue E, Midorikawa T (2003) Iron (III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep Sea Res I 50:1063–1078. https://doi.org/10.1016/S0967-0637(03)00098-0
Article
Google Scholar
Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi D, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic Pacific induces large centric diatom bloom. Science 300:958–961
Article
Google Scholar
Tsuda A, Takeda S, Saito H, Nishioka J, Kudo I, Nojiri Y, Suzuki K, Uematsu M, Wells ML, Tsumune D, Yoshimura T, Aono T, Aramaki T, Cochlan WP, Hayakawa M, Imai K, Isada T, Iwamoto Y, Johnson WK, Kameyama S, Kato S, Kiyosawa H, Kondo Y, Levasseur M, Machida R, Nagao I, Nakagawa F, Nakanishi T, Nakatsuka S, Narita A, Noiri Y, Obata H, Ogawa H, Oguma K, Ono T, Sakuragi T, Sasakawa M, Sato M, Shimamoto A, Takada H, Trick CG, Watanabe YW, Wong CS, Yoshie N (2007) Evidence for the grazing hypothesis: Grazing reduces phytoplankton responses of the HNLC ecosystem to iron enrichment in the western subarctic Pacific (SEEDS II). J Oceanogr 63:983–994
Article
Google Scholar
Tsurushima N, Nojiri Y, Imai K, Watanabe S (2002) Seasonal variations of carbon dioxide system and nutrients in the surface mixed layer at station KNOT (44°N, 155°E) in the subarctic western North Pacific. Deep Sea Res II 49:5377–5394
Article
Google Scholar
Uchida R, Kuma K, Omata A, Ishikawa S, Hioki N, Ueno H, Isoda Y, Sakaoka K, Kamei Y, Takagi S (2013) Water column iron dynamics in the subarctic North Pacific Ocean and the Bering Sea. J Geophys Res 118:1257–1271. https://doi.org/10.1002/jgrc.20097
Article
Google Scholar
Uehara H, Kruts AA, Mitsudara H, Nakamura T, Volkov YN, Wakatsuchi M (2014) Remotely propagating salinity anomaly varies the source of North Pacific ventilation. Prog Oceanogr 126:80–97. https://doi.org/10.1016/j.pocean.2014.04.016
Article
Google Scholar
Uematsu M, Duce RA, Prospero JM, Chen L, Merrill JT, McDonald RL (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J Geophys Res 88:5343–5352
Article
Google Scholar
Uematsu M, Wand Z, Uno I (2003) Atmospheric input of mineral dust to the western North Pacific region based on direct measurement and regional chemical transport model. Geophys Res Lett 30(6):1342. https://doi.org/10.1029/2002GL016645
Article
Google Scholar
Uematsu M, Yokouchi Y, Watanabe TW, Takeda S, Yamanaka Y (edit) (2014) Western Pacific Air-Sea Interaction Study. TERRAPUB, 284 pp
van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157. https://doi.org/10.1016/0304-4203(95)00032-M
Article
Google Scholar
Watson A, Liss P, Duce R (1991) Design of a small-scale in situ iron fertilization experiment. Limnol Oceanogr 36(8):1960–1965
Article
Google Scholar
Whitney FA (2011) Nutrient variability in the mixed layer of the subarctic Pacific Ocean, 1987–2010. J Oceanogr. https://doi.org/10.1007/s10872-011-0051-2
Article
Google Scholar
Whitney FA, Freeland HJ (1999) Variability in upper-ocean water properties in the NE Pacific Ocean. Deep Sea Res II 46:2351–2370
Article
Google Scholar
Whitney FA, Crawfoard WR, Harrison PJ (2005) Physical processes that enhance nutrient transport and primary productivity in the coastal and open ocean of the subarctic NE Pacific. Deep Sea Res II 52:681–706
Article
Google Scholar
Whitney FA, Bograd SJ, Ono T (2013) Nutrient enrichment of the subarctic Pacific Ocean pycnocline. Geophys Res Lett 40:2200–2205. https://doi.org/10.1002/grl.50439
Article
Google Scholar
Wong CS, Matear RJ, Freeland HJ, Whitney FA, Bychkov AS (1998) WOCE line P1W in the sea of Okhotsk: 2. CFCs and the formation rate of intermediate water. J Geophys Res Oceans 103:15625–15642
Article
Google Scholar
Wu J, Boyle E (2002) Determination of iron in seawater by high-resolution isotope dilution inductively coupled mass spectrometry after Mg(OH)2 coprecipitation. Anal Chim Acta 367:183–191
Article
Google Scholar
Wu J, Boyle E, Sunda W, Wen L-S (2001) Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293:847–849. https://doi.org/10.1126/science.1059251
Article
Google Scholar
Wu J, Aguilar-Islas A, Rember R, Weingartner T, Danielson S, Whitledge T (2009) Size-fractionated iron distribution on the northern Gulf of Alaska. Geophys Res Lett 36:L11606. https://doi.org/10.1029/2009GL038304
Article
Google Scholar
Xiu P, Palacz AP, Chai F, Roy EG, Wells ML (2011) Iron flux induced by Hida eddies in the Gulf of Alaska. Geophys Res Lett 38:L13607. https://doi.org/10.1029/2011GL047946
Article
Google Scholar
Yagi M, Yasuda I (2012) Deep intense vertical mixing in the Bussol’ Strait. Geophys Res Lett 39:L01602. https://doi.org/10.1029/2011GL050349
Article
Google Scholar
Yamamoto-Kawai M, Watanabe S, Tsunogai S, Wakatsuchi M (2004) Chlorofluorocarbons in the Sea of Okhotsk: ventilation of the intermediatewater. J Geophys Res Oceans 109:C09S11. https://doi.org/10.1029/2003JC001919
Article
Google Scholar
Yamashita Y, Tanoue E (2008) Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat Geosci 1:579–582. https://doi.org/10.1038/ngeo279
Article
Google Scholar
Yamashita Y, Nishioka J, Obata H, Ogawa H (2020) Shelf humic substances as carriers for basin-scale iron transport in the North pacific. Sci Rep 10:4505. https://doi.org/10.1038/s41598-020-61375-7
Article
Google Scholar
Yasuda I (1997) The origin of the North Pacific intermediate water. J Geophys Res 102(C1):893–909
Article
Google Scholar
Yasuda I, Hiroe Y, Komatsu K, Kawasaki K, Joyce TM, Bahr F, Kawasaki Y (2001) Hydrographic structure and transport of the Oyashio south of Hokkaido and the formation of North pacific Intermediate Water. J Geophys Res 106(C4):6931–6942
Article
Google Scholar
Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Whitney FA, Telszewski M (2014) Mapping of sea surface nutrients in the North Pacific: basin-wide distribution and seasonal to interannual variability. J Geophys Res 119:7756–7771. https://doi.org/10.1002/2014JC010318
Article
Google Scholar
Yasunaka S, Mitsudera H, Whitney F, Nakaoka S (2020) Nutrient and dissolved inorganic carbon variability in the North pacific. J Oceanogr. https://doi.org/10.1007/s10872-020-00561-7
Article
Google Scholar
Yoshie N, Suzuki K, Kuwata A, Nishioka J, Saito H (2010) Temporal and spatial variations in photosynthetic physiology of diatoms during the spring bloom in the western subarctic Pacific. Mar Ecol Prog Ser 309:39–52
Article
Google Scholar
Yoshikawa C, Nakatsuka T, Wakatsuchi M (2006) Distribution of N* in the Sea of Okhotsk and its use as a biogeochemical tracer of the Okhotsk Sea Intermediate Water formation process. J Mar Syst 63:49–62
Article
Google Scholar
Yoshimura T, Nishioka J, Nakatsuka T (2010) Iron nutritional status of the phytoplankton assemblage in the Okhotsk Sea during summer. Deep Sea Res I 57:1454–1464
Article
Google Scholar
Zheng L, Sohrin Y (2019) Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean. Sci Rep 9:11652. https://doi.org/10.1038/s41598-019-48035-1
Article
Google Scholar
Zheng L, Minami T, Takano S, Minami H, Sohrin Y (2017) Distribution and stoichiometry of Al, Mn, Fe Co, Ni, Cu, Zn, Cd, and Pb in seawater around the Juan de Fuca Ridge. J Oceanogr 73:669–685. https://doi.org/10.1007/s10872-017-0424-2
Article
Google Scholar