Skip to main content

Advertisement

Log in

Distribution, biomass, and species composition of salps and doliolids in the Oyashio–Kuroshio transitional region: potential impact of massive bloom on the pelagic food web

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The Oyashio–Kuroshio Transitional Region (OKTR) is a nursery ground for pelagic fishes; thus, community succession of mesozooplankton is pivotal to understand prey availability, and it subsequently affects recruitment success. We investigated the surface distribution, biomass, and species composition of thaliaceans (salps and doliolids) that potentially have a significant impact on the food web and biogeochemical cycle by forming intensive blooms. A total of 11 thaliacean species were recorded from 62 locations along two transects at 36° N and 38.5° N extending from 142° E to 180° in May to June 1993. Salps and doliolids were found at 93% and 84% of the stations, respectively, and their biomass values varied widely in space (0.00011–79.56 and 0.00001–5.11 mg C m−3 for salps and doliolids, respectively). Thalia democratica was the most dominant salp and particularly abundant at stations east of 165°E on the 36°N-line; the abundance varied from 103 to 1379 ind m−3. Dolioletta gegenbauri and Doliolum denticulatum were dominant doliolids, although their biomass values were far lower than that of salps. Multivariate statistical analysis with PRIMER revealed that the distribution of thaliaceans in the OKTR was not uniform in space and was affected by oceanographic conditions; doliolids tended to occur in much warmer (14.10–15.63 °C) and saline water mass (34.54–34.72) than salps (13.16–14.95 °C and 34.40–34.53). In terms of population clearance rates, the most dense salp blooms have the potential to sweep > 200% of their resident water per day, indicating that salp blooms cause deleterious feeding conditions for pelagic fishes through non-selective filter feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad Ishak NH, Clementson LA, Eriksen RS, Van Den Enden RL, Williams GD, Swadling KM (2017) Gut contents and isotopic profiles of Salpa fusiformis and Thalia democratica. Mar Biol 164:144. https://doi.org/10.1007/s00227-017-3174-1

    Article  Google Scholar 

  • Akiyama H, Hidaka K, Hirai M, Ishida Y, Moku M, Sugimoto S, Tadokoro K, Tamura T, Watanabe H, Yatsu A (2004) Oyashio/Kuroshio. In: Perry RI, Mckinnell SM (eds) Marine ecosystems of the North Pacific. PICES Special Publication No. 1 pp 113−127

  • Andersen V (1985) Filtration and ingestion rates of Salpa fusiformis Cuvier (Tunicata:Thaliacea): effects of size, individual weight and algal concentration. J Exp Biol Ecol 87:13–29. https://doi.org/10.1016/0022-0981(85)90188-1

    Article  Google Scholar 

  • Andersen V (1998) Salp and pyrosomid blooms and their importance in biogeochemical cycles. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 125–137

    Google Scholar 

  • Aoki I, Miyashita K (2000) Dispersal of larvae and juveniles of Japanese anchovy Engraulis japonicus in the Kuroshio Extension and Kuroshio–Oyashio transition regions, western North Pacific Ocean. Fish Res 49:155–164. https://doi.org/10.1016/S0165-7836(00)00197-1

    Article  Google Scholar 

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432:100–103. https://doi.org/10.1038/nature02996

    Article  Google Scholar 

  • Binet D (1976) Contribution a l'ecologie de quelques taxons du zooplancton de Cote d'Ivoire. II. Dolioles–Salpes–Appendiculaires. Doc Scient Centre Rech Oceanogr Abidjan 7:45–61 (in French with English summary)

    Google Scholar 

  • Boero F, Bouillon J, Gravili C, Miglietta MP, Parsons T, Piraino S (2008) Gelatinous plankton: irregularities rule the world (sometimes). Mar Ecol Prog Ser 356:299–310. https://doi.org/10.3354/meps07368

    Article  Google Scholar 

  • Bone Q (1998) The biology of pelagic tunicates. Oxford University Press, Oxford

    Google Scholar 

  • Bruland KW, Silver MW (1981) Sinking rates of fecal pellets from gelatinous zooplankton (Salps, Pteropods, Doliolids). Mar Bio 63:295–300

    Article  Google Scholar 

  • Cabanes D, Norman L, Santos-Echeandía J, Iversen M, Trimborn S, Laglera L, Hassler CS (2017) First evaluation of the role of salp fecal pellets on iron biogeochemistry. Front Mar Sci 3:107–116. https://doi.org/10.3389/fmars.2016.00289

    Article  Google Scholar 

  • Cetta CM, Madin LP, Kremer P (1986) Respiration and excretion by oceanic salps. Mar Biol 91:529–537

    Article  Google Scholar 

  • Chavez FP, Ryan J, Lluch-Cota SE, Niquen MC (2003) From anchovies to sardines and back: multidecadal change in the Pacific ocean. Science 299:217–221. https://doi.org/10.1126/science.1075880

    Article  Google Scholar 

  • Chiba S, Tadokoro K, Sugisaki H, Saino T (2006) Effects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Glob Change Biol 12:907–920. https://doi.org/10.1111/j.1365-2486.2006.01136.x

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. (Plymouth Routines in Multivariate Ecological Research). Plymouth: PRIMER-E

  • Crocker KM, Alldredge AL, Steinberg DK (1991) Feeding rates of the doliolid, Dolioletta gegenbauri, on diatoms and bacteria. J Plankton Res 13:77–82. https://doi.org/10.1093/plankt/13.1.77

    Article  Google Scholar 

  • De Decker A (1973) Agulhas Bank plankton. In: Zeitschel B (ed) The bology of the Indian Ocean. Springer, Berlin, pp 189–219

    Chapter  Google Scholar 

  • Deibel D (1982) Laboratory-measured grazing and ingestion rates of the salp, Thalia democratica Forskal, and the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 4:189–201. https://doi.org/10.1093/plankt/4.2.189

    Article  Google Scholar 

  • Esnal GB (1978) Los salpidos (Tunicata, Thaliacea) del Golfo de Mexico y Mar Caribe. Physis, Buenos Aires, sección A 38:59–66

    Google Scholar 

  • Everett J, Baird ME, Suthers IM (2011) Three-dimensional structure of a swarm of the salp Thalia democratica within a cold-core eddy off southeast Australia. J Geophys Res 116:C12046. https://doi.org/10.1029/2011JC007310

    Article  Google Scholar 

  • Gibson DM, Paffenhöfer GA (2000) Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 22:1485–1500. https://doi.org/10.1093/plankt/22.8.1485

    Article  Google Scholar 

  • Hanawa K, Mitsudera H (1986) Variation of water system distribution in the Sanriku Coastal area. J Oceanogr 42:435–446. https://doi.org/10.1007/BF02110194

    Article  Google Scholar 

  • Heath M, Zenitani H, Watanabe Y, Kimura R, Ishida M (1998) Modelling the dispersal of larval Japanese sardine, Sardinops melanostictus, by the Kuroshio Current in 1993 and 1994. Fish Oceanogr 7:335–346. https://doi.org/10.1046/j.1365-2419.1998.00076.x

    Article  Google Scholar 

  • Henschke N, Everett J, Baird ME, Taylor SIM (2011) Distribution of life-history stages of the salp Thalia democratica in shelf waters during a spring bloom. Mar Ecol Prog Ser 430:49–62. https://doi.org/10.3354/meps09090

    Article  Google Scholar 

  • Henschke N, Everett JD, Richardson AJ, Suthers IM (2016) Rethinking the role of salps in the ocean. Trends Ecol Evol 31:720–733. https://doi.org/10.1016/j.tree.2016.06.007

    Article  Google Scholar 

  • Hereu CM, Lavaniegos BE, Gaxiola-Castro G, Ohman MD (2006) Composition and potential grazing impact of salp assemblages off Baja California during the 1997–1999 El Niño and La Niña. Mar Ecol Prog Ser 318:123–140. https://doi.org/10.3354/meps318123

    Article  Google Scholar 

  • Heron AC (1972) Population ecology of a colonizing species: the pelagic tunicate Thalia democratica. Oecologia 10:269–293. https://doi.org/10.1007/BF00345733

    Article  Google Scholar 

  • Heron AC, Mcwilliam PS, Dal Pont G (1988) Length–weight relation in the salp Thalia democratica and potential of salps as a source of food. Mar Ecol Prog Ser 42:125–132. https://doi.org/10.3354/meps042125

    Article  Google Scholar 

  • Hoeksema BW, Waheed Z (2012) It pays to have a big mouth: mushroom corals ingesting salps at northwest Borneo. Mar Biodivers 42:297–302. https://doi.org/10.1007/s00338-011-0834-3

    Article  Google Scholar 

  • Johnson WS, Allen DM (2012) Zooplankton of the Atlantic and Gulf Coasts: a guide to their identification and ecology. JHU Press, Maryland, p 472

    Google Scholar 

  • Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26:589–603. https://doi.org/10.1093/plankt/fbh062

    Article  Google Scholar 

  • Lavaniegos BE, Ohman MD (2003) Long-term changes in pelagic tunicates of the California Current. Deep-Sea Res Pt II 50:2473–2498. https://doi.org/10.1016/S0967-0645(03)00132-2

    Article  Google Scholar 

  • Li K, Yin J, Huang L, Zhang J, Lian S, Liu C (2011) Distribution and abundance of thaliaceans in the northwest continental shelf of South China Sea, with response to environmental factors driven by monsoon. Cont Shelf Res 31:979–989. https://doi.org/10.1016/j.csr.2011.03.004

    Article  Google Scholar 

  • Madin LP, Deibel D (1998) Feeding and energetics of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 81–103

    Google Scholar 

  • Madin LP, Kremer P, Hacker S (1996) Distribution and vertical migration of salps (Tunicata, Thaliacea) near Bermuda. J Plankton Res 18:747–755. https://doi.org/10.1093/plankt/18.5.747

    Article  Google Scholar 

  • Madin LP, Purcell JE, Miller CB (1997) Abundance and grazing effects of Cyclosalpa bakeri in the subarctic Pacific. Mar Ecol Prog Ser 157:175–183. https://doi.org/10.3354/meps157175

    Article  Google Scholar 

  • Martin B, Koppelmann R, Kassatov P (2017) Ecological relevance of salps and doliolids in the northern Benguela upwelling system. J Plankton Res 39:290–304. https://doi.org/10.1093/plankt/fbw095

    Article  Google Scholar 

  • Matsuo Y, Sugisaki H, Yokouchi K (1997) Observation over a 24 hour cycle of diurnal vertical migration. Bull Tohoku Natl Fish Res Inst 59:171–175

    Google Scholar 

  • Mianzan HW, Pájaro M, Alvarez Colombo G, Madirolas A (2001) Feeding on survival-food: gelatinous plankton as a source of food for anchovies. Hydrobiol 451:45–53. https://doi.org/10.1023/A:1011836022232

    Article  Google Scholar 

  • Motoda S (1959) Devices of simple plankton apparatus. Mem Fac Fish Hokkaido Univ 7:73–94

    Google Scholar 

  • Mullin MM (1983) In situ measurement of filtering rates of the salp, Thalia democratica, on phytoplankton and bacteria. J Plankton Res 5:279–288

    Article  Google Scholar 

  • Nakamura Y (1988) Blooms of tunicates Oikopleura spp. and Dolioletta gegenbauri in the Seto Inland Sea, Japan, during summer. Hydrobiol 385:183–192. https://doi.org/10.1023/A:1003531812536

    Article  Google Scholar 

  • Nishibe Y, Takahashi K, Shiozaki T, Kakehi S, Saito H, Furuya K (2015) Size-fractionated primary production in the Kuroshio Extension and adjacent regions in spring. J Oceanogr 71:27–40. https://doi.org/10.1007/s10872-014-0258-0

    Article  Google Scholar 

  • Nishibe Y, Takahashi K, Sato M, Kodama T, Kakehi S, Saito H, Furuya K (2017) Phytoplankton community structure, as derived from pigment signatures, in the Kuroshio Extension and adjacent regions in winter and spring. J Oceanogr 73:463–478. https://doi.org/10.1007/s10872-017-0415-3

    Article  Google Scholar 

  • Nishikawa J (1995) Ecological study of the pelagic tunicates, salps and doliolids. PhD Thesis, University of Tokyo, pp 1–358

  • Nishikawa J, Terazaki M (1996) Tissue shrinkage of two gelatinous zooplankton, Thalia democratica and Dolioletta gegenbauri (Tunicata: Thaliacea) in preservative. Bull Plankton Soc Japan 43(1):1–7

    Google Scholar 

  • Odate K (1994) Zooplankton biomass and its long-term variation in the western North Pacific Ocean. Bull Tohoku Reg Fish Res Lab 56:115–173

    Google Scholar 

  • Oozeki Y, Watanabe Y, Kitagawa D (2004) Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean. Fish Oceanogr 13:44–53. https://doi.org/10.1111/j.1365-2419.2004.00317.x

    Article  Google Scholar 

  • Paffenhöefer GA, Atkinson LP, Lee TN, Verity PG, Bulluck LR III (1995) Distribution and abundance of thaliaceans and copepods off the southeastern U.S.A. during winter. Cont Shelf Res 15:255–280. https://doi.org/10.1016/0278-4343(94)E0004-6

    Article  Google Scholar 

  • Sakurai Y (2007) An overview of the Oyashio ecosystem. Deep-Sea Res Pt II 54:2526–2542. https://doi.org/10.1016/j.dsr2.2007.02.007

    Article  Google Scholar 

  • Shimizu Y, Ito SI (1996) A new method to draw isotherms in the Tohoku offshore area: new interpolation method “flexible Gaussian filter. Bull Tohoku Natl Fish Res Inst 58:105–117

    Google Scholar 

  • Shreeve RS, Collins MA, Tarling GA, Main CE, Ward P, Johnston NM (2009) Feeding ecology of myctophid fishes in the northern Scotia Sea. Mar Ecol Prog Ser 386:221–236. https://doi.org/10.3354/meps08064

    Article  Google Scholar 

  • Stone JP, Steinberg DK (2016) Salp contributions to vertical carbon flux in the Sargasso Sea. Deep-Sea Res Pt I 113:90–100. https://doi.org/10.1016/j.dsr.2016.04.007

    Article  Google Scholar 

  • Sutherland K, Madin LP, Stocker R (2010) Filtration of submicrometer particles by pelagic tunicates. PNAS 107:15129–15134. https://doi.org/10.1073/pnas.1003599107

    Article  Google Scholar 

  • Takahashi K, Ichikawa T, Saito H, Kakehi S, Sugimoto Y, Hidaka K, Hamasaki K (2013) Sapphirinid copepods as predators of doliolids: Their role in doliolid mortality and sinking flux. Limnol Oceanogr 58:1972–1984. https://doi.org/10.4319/lo.2013.58.6.1972

    Article  Google Scholar 

  • Takahashi K, Ichikawa T, Fukugama C, Yamane M, Kakehi S, Okazaki Y, Kubota H, Furuya K (2015) In situ observations of a doliolid bloom in a warm water filament using a video plankton recorder: Bloom development, fate, and effect on biogeochemical cycles and planktonic food webs. Limnol Oceanogr 60:1763–1780. https://doi.org/10.1002/lno.10133

    Article  Google Scholar 

  • Takahashi M, Watanabe Y (2004) Growth rate-dependent recruitment of Japanese anchovy Engraulis japonicus in the Kuroshio–Oyashio transitional waters. Mar Ecol Prog Ser 266:227–238. https://doi.org/10.3354/meps266227

    Article  Google Scholar 

  • Takasuka A, Aoki I (2002) Growth rates of larval stages of Japanese anchovy Engraulis japonicus and environmental factors in the Kuroshio Extension and Kuroshio-Oyashio transition regions, western North Pacific Ocean. Fish Sci 68:445–446. https://doi.org/10.2331/fishsci.68.sup1_445

    Article  Google Scholar 

  • Tew KS, Lo W (2005) Distribution of Thaliacea in SW Taiwan coastal water in 1997, with special reference to Doliolum denticulatum, Thalia democratica and T. orientalis. Mar Ecol Prog Ser 292:181–193. https://doi.org/10.3354/meps292181

    Article  Google Scholar 

  • The Mermex Group, Madron D, Guieu C, Sempéré R, Conan P, Cossa D, D’ortenzio F, Estourneli C, Gazeau F, Rabouille C, Stemmann L, Bonnet S, Diaz F, Koubbi P, Radakovitch O, Babin M, Baklouti M, Bancon-Montigny C, Belviso S, Bensoussan N, Bonsang B, Bouloubassi I, Brunet C, Cadiou JF, Carlotti F, Chami M, Charmasson S, Charrière B, Dachs J, Doxaran D, Dutay JC, Elbaz-Poulichet F, Eléaume M, Eyrolles F, Fernandez C, Fowler S, Francour P, Gaertner JC, Galzin R, Gasparini S, Ghiglione JF, Gonzalez JL, Goyet C, Guidi L, Guizien K, Heimbürger LE, Jacquet SHM, Jeffrey WH, Joux F, Le Hir P, Leblanc K, Lefèvre D, Lejeusne C, Lemé R, Loÿe-Pilot MD, Mallet M, Méjanelle L, Mélin F, Mellon C, Mérigot B, Merle PL, Migon C, Miller WL, Mortier L, Mostajir B, Mousseau L, Moutin T, Para J, Pérez T, Petrenko A, Poggiale JC, Prieur L, Pujo-Pay M, Pulido-Villena, Raimbault P, Rees AP, Ridame C, Rontani JF, Ruiz Pino D, Sicre MA, Taillandier V, Tamburini C, Tanaka T, Taupier-Letage I, Tedetti M, Testor P, Thébault H, Thouvenin B, Touratier F, Tronczynski J, Ulses C, Van Wambeke F, Vantrepotte V, Vaz S, Verney R (2011) Marine ecosystems’ responses to climatic and anthropogenic forcings in the Mediterranean. Prog Oceanogr 91:97−166. doi:10.1016/j.pocean.2011.02.003

  • Tohoku National Fisheries Research Institute, Fisheries Research Agency [TNFRI] (1994) Annual Report of the Research Meeting on Saury Resources 43. pp. 303 (In Japanese)

  • Tsuda A, Nemoto T (1992) Distribution and growth of salps in a Kuroshio warm-core ring during summer 1987. Deep-Sea Res 39:S219–S229. https://doi.org/10.1016/S0198-0149(11)80013-0

    Article  Google Scholar 

  • Tsukamoto Y, Zenitani H, Kimura R, Watanabe Y, Oozeki Y (2001) Vertical distribution of fish larvae in the Kuroshio and Kuroshio–Oyashio transition region in early summer. Bull Natl Res Inst Fish Sci 16:39–56

    Google Scholar 

  • Vargas CA, Madin LP (2004) Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. J Plankton Res 26:827–833. https://doi.org/10.1093/plankt/fbh068

    Article  Google Scholar 

  • Walters TL, Lamboley LM, López-Figueroa NB, Rodríguez-Santiago AE, Gibson DM, Frischer ME (2018) Diet and trophic interactions of a circumglobally significant gelatinous marine zooplankter, Dolioletta gegenbauri (Uljanin, 1884). Mol Ecol 28:176–189. https://doi.org/10.1111/mec.14926

    Article  Google Scholar 

  • Watanabe Y, Zenitani H, Kimura R (1995) Population decline off the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can J Fish Aquat Sci 52:16091–16616. https://doi.org/10.1139/f95-154

    Article  Google Scholar 

  • Watanabe Y, Kurita Y, Noto M, Oozeki Y, Kitagawa D (2003) Growth and Survival of Pacific Saury Cololabis saira in the Kuroshio–Oyashio Transitional Waters. J Oceanogr 59:403–414. https://doi.org/10.1023/A:102553243

    Article  Google Scholar 

  • Weikert H, Godeaux JEA (2008) Thaliacean distribution and abundance in the northern part of the Levantine Sea (Crete and Cyprus) during the eastern Mediterranean climatic transient, and a comparison with the western Mediterranean basin. Helgol Mar Res 62:377–387. https://doi.org/10.1007/s10152-008-0126-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank the captain, crews, and scientists on board the R/V Shin-hoyo-Maru for cooperation at sea. This work was partially supported by the Fisheries Agency of Japan. We also thank H. Itoh for preliminary analysis and identification of the salps and doliolids and Mohd Noor Hafiz for producing the map and diagrams. We would like to thank Editage (www.editage.com) for English language editing. This study was performed while the lead author held the Malaysia Ministry of Higher Education Postdoctoral Scholarship and Universiti Malaysia Terengganu scholarship. This study was financially supported by grants from the Japan Society for the Promotion of Science KAKENHI (16H04950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Huda Ahmad Ishak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 22 kb)

Supplementary file2 (DOC 1096 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, N.H.A., Tadokoro, K., Okazaki, Y. et al. Distribution, biomass, and species composition of salps and doliolids in the Oyashio–Kuroshio transitional region: potential impact of massive bloom on the pelagic food web. J Oceanogr 76, 351–363 (2020). https://doi.org/10.1007/s10872-020-00549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00549-3

Keywords

Navigation